Acknowledgement
Figure 1의 제작을 도와준 김종호 님에게 감사드립니다.
References
- Kruse T, Hansen JL, Dahl K, et al. Development of cagrilintide, a long-acting amylin analogue. J Med Chem 2021;64:11183-94. https://doi.org/10.1021/acs.jmedchem.1c00565
- Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021;384:989-1002. https://doi.org/10.1056/NEJMoa2032183
- Davies M, Faerch L, Jeppesen OK, et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021;397:971-84. https://doi.org/10.1016/S0140-6736(21)00213-0
- Wadden TA, Bailey TS, Billings LK, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA 2021;325:1403-13. https://doi.org/10.1001/jama.2021.1831
- Rubino D, Abrahamsson N, Davies M, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 2021;325:1414-25. https://doi.org/10.1001/jama.2021.3224
- Kadowaki T, Isendahl J, Khalid U, et al. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol 2022;10:193-206. https://doi.org/10.1016/S2213-8587(22)00008-0
- Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA 2022;327:138-50. https://doi.org/10.1001/jama.2021.23619
- Bucheit JD, Pamulapati LG, Carter N, Malloy K, Dixon DL, Sisson EM. Oral semaglutide: a review of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technol Ther 2020;22:10-8. https://doi.org/10.1089/dia.2019.0185
- Brown JC, Pederson RA, Jorpes E, Mutt V. Preparation of highly active enterogastrone. Can J Physiol Pharmacol 1969;47:113-4. https://doi.org/10.1139/y69-020
- Pederson RA, Schubert HE, Brown JC. Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 1975;24:1050-6. https://doi.org/10.2337/diabetes.24.12.1050
- Cho YM, Kieffer TJ. K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 2010;84:111-50. https://doi.org/10.1016/B978-0-12-381517-0.00004-7
- Irwin N, Flatt PR. Therapeutic potential for GIP receptor agonists and antagonists. Best Pract Res Clin Endocrinol Metab 2009;23:499-512. https://doi.org/10.1016/j.beem.2009.03.001
- Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993;91:301-7. https://doi.org/10.1172/JCI116186
- Chia CW, Carlson OD, Kim W, et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 2009;58:1342-9. https://doi.org/10.2337/db08-0958
- El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides 2020;125:170213. https://doi.org/10.1016/j.peptides.2019.170213
- Piteau S, Olver A, Kim SJ, et al. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun 2007;362:1007-12. https://doi.org/10.1016/j.bbrc.2007.08.115
- Hojberg PV, Vilsboll T, Rabol R, et al. Four weeks of nearnormalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 2009;52:199-207. https://doi.org/10.1007/s00125-008-1195-5
- Zhang Q, Delessa CT, Augustin R, et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 2021;33:833-44.e5. https://doi.org/10.1016/j.cmet.2021.01.015
- Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 2013;5:209ra151. https://doi.org/10.1126/scitranslmed.3007218
- Gasbjerg LS, Helsted MM, Hartmann B, et al. Separate and combined glucometabolic effects of endogenous glucosedependent insulinotropic polypeptide and glucagon-like peptide 1 in healthy individuals. Diabetes 2019;68:906-17. https://doi.org/10.2337/db18-1123
- Willard FS, Douros JD, Gabe MB, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 2020;5:e140532. https://doi.org/10.1172/jci.insight.140532
- Rosenstock J, Wysham C, Frias JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 2021;398:143-55. Erratum in: Lancet 2021;398:212. https://doi.org/10.1016/S0140-6736(21)01324-6
- Frias JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021;385:503-15. https://doi.org/10.1056/NEJMoa2107519
- Ludvik B, Giorgino F, Jodar E, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 2021;398:583-98. https://doi.org/10.1016/S0140-6736(21)01443-4
- Del Prato S, Kahn SE, Pavo I, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021;398:1811-24. https://doi.org/10.1016/S0140-6736(21)02188-7
- Dahl D, Onishi Y, Norwood P, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA 2022;327:534-45. https://doi.org/10.1001/jama.2022.0078
- Al-Massadi O, Ferno J, Dieguez C, Nogueiras R, Quinones M. Glucagon control on food intake and energy balance. Int J Mol Sci 2019;20:3905. https://doi.org/10.3390/ijms20163905
- Kazda CM, Ding Y, Kelly RP, et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 2016;39:1241-9. Erratum in: Diabetes Care 2017;40:808. https://doi.org/10.2337/dc15-1643
- Kazierad DJ, Chidsey K, Somayaji VR, Bergman AJ, Calle RA. Efficacy and safety of the glucagon receptor antagonist PF06291874: a 12-week, randomized, dose-response study in patients with type 2 diabetes mellitus on background metformin therapy. Diabetes Obes Metab 2018;20:2608-16. https://doi.org/10.1111/dom.13440
- Pettus JH, D'Alessio D, Frias JP, et al. Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy: a 12-week dose-ranging study. Diabetes Care 2020;43:161-8. https://doi.org/10.2337/dc19-1328
- Ma T, Huo S, Xu B, et al. A novel long-acting oxyntomodulin analogue eliminates diabetes and obesity in mice. Eur J Med Chem 2020;203:112496. https://doi.org/10.1016/j.ejmech.2020.112496
- Spezani R, Mandarim-de-Lacerda CA. The current significance and prospects for the use of dual receptor agonism GLP-1/Glucagon. Life Sci 2022;288:120188. https://doi.org/10.1016/j.lfs.2021.120188
- Nahra R, Wang T, Gadde KM, et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care 2021;44:1433-42. https://doi.org/10.2337/dc20-2151
- Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev 2015;67:564-600. https://doi.org/10.1124/pr.115.010629
- Dunican KC, Adams NM, Desilets AR. The role of pramlintide for weight loss. Ann Pharmacother 2010;44:538-45. https://doi.org/10.1345/aph.1M210
- Ravussin E, Smith SR, Mitchell JA, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 2009;17:1736-43. https://doi.org/10.1038/oby.2009.184
- Aronne LJ, Halseth AE, Burns CM, Miller S, Shen LZ. Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial. Obesity (Silver Spring) 2010;18:1739-46. https://doi.org/10.1038/oby.2009.478
- Enebo LB, Berthelsen KK, Kankam M, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2.4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 2021;397:1736-48. https://doi.org/10.1016/S0140-6736(21)00845-X