DOI QR코드

DOI QR Code

Peptides in Obesity Treatment

비만의 펩타이드 치료제

  • Kim, Kyoung-Kon (Department of Family Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine)
  • 김경곤 (가천대학교 의과대학 가천대 길병원 가정의학과)
  • Received : 2022.05.15
  • Accepted : 2022.06.14
  • Published : 2022.06.30

Abstract

Currently, pharmacotherapy is becoming essential for obesity, owing to its expanding and increasing epidemiology. In this review, novel peptide-based drugs of four classes are covered: GLP-1 receptor agonist, GIP/GLP-1 receptor dual agonist, glucagon/GLP-1 receptor dual agonist, and a combination of amylin receptor agonist/GLP-1 receptor agonist. Semaglutide is a next-generation GLP-1 receptor agonist with a longer duration and stronger weight and glucose reduction effects than liraglutide and dulaglutide. In the STEP1 trial, semaglutide 2.4 mg reduced body weight by approximately 15% in people with obesity with similar or milder adverse events than liraglutide 3.0 mg. Tirzepatide, a GIP/GLP-1 receptor dual agonist, also has a long duration and strong weight- and glucose-lowering effect. According to SURPASS-2, 3, and 4, in patients with BMI≥25 kg/m2 and type 2 diabetes mellitus (T2DM), tirzepatide 15 mg reduced the initial body weight by >13%. Cotadutide, a glucagon/GLP-1 receptor dual agonist, showed weaker weight-lowering effects than semaglutide and tirzepatide, while it was comparable to that of liraglutide in a phase 2 clinical trial for non-alcoholic fatty liver disease in patients with BMI≥25 kg/m2 and T2DM. Additionally, its effect on the liver was noticeable. The long-acting amylin receptor agonist cargrilintide combined with semaglutide can be another effective option for obesity treatment. Even in a small phase 1 trial with a short study period of 20 weeks, cargrilintide 2.4 mg/semaglutide 2.4 mg reduced by 17% of initial body weight in people with BMI 27-39.9 kg/m2. In coming several years, semaglutide, tirzepatide, and cargrilintide/semaglutide will become available for obesity treatment in Korea.

Keywords

Acknowledgement

Figure 1의 제작을 도와준 김종호 님에게 감사드립니다.

References

  1. Kruse T, Hansen JL, Dahl K, et al. Development of cagrilintide, a long-acting amylin analogue. J Med Chem 2021;64:11183-94. https://doi.org/10.1021/acs.jmedchem.1c00565
  2. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021;384:989-1002. https://doi.org/10.1056/NEJMoa2032183
  3. Davies M, Faerch L, Jeppesen OK, et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021;397:971-84. https://doi.org/10.1016/S0140-6736(21)00213-0
  4. Wadden TA, Bailey TS, Billings LK, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA 2021;325:1403-13. https://doi.org/10.1001/jama.2021.1831
  5. Rubino D, Abrahamsson N, Davies M, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 2021;325:1414-25. https://doi.org/10.1001/jama.2021.3224
  6. Kadowaki T, Isendahl J, Khalid U, et al. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol 2022;10:193-206. https://doi.org/10.1016/S2213-8587(22)00008-0
  7. Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA 2022;327:138-50. https://doi.org/10.1001/jama.2021.23619
  8. Bucheit JD, Pamulapati LG, Carter N, Malloy K, Dixon DL, Sisson EM. Oral semaglutide: a review of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technol Ther 2020;22:10-8. https://doi.org/10.1089/dia.2019.0185
  9. Brown JC, Pederson RA, Jorpes E, Mutt V. Preparation of highly active enterogastrone. Can J Physiol Pharmacol 1969;47:113-4. https://doi.org/10.1139/y69-020
  10. Pederson RA, Schubert HE, Brown JC. Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 1975;24:1050-6. https://doi.org/10.2337/diabetes.24.12.1050
  11. Cho YM, Kieffer TJ. K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 2010;84:111-50. https://doi.org/10.1016/B978-0-12-381517-0.00004-7
  12. Irwin N, Flatt PR. Therapeutic potential for GIP receptor agonists and antagonists. Best Pract Res Clin Endocrinol Metab 2009;23:499-512. https://doi.org/10.1016/j.beem.2009.03.001
  13. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993;91:301-7. https://doi.org/10.1172/JCI116186
  14. Chia CW, Carlson OD, Kim W, et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 2009;58:1342-9. https://doi.org/10.2337/db08-0958
  15. El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides 2020;125:170213. https://doi.org/10.1016/j.peptides.2019.170213
  16. Piteau S, Olver A, Kim SJ, et al. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun 2007;362:1007-12. https://doi.org/10.1016/j.bbrc.2007.08.115
  17. Hojberg PV, Vilsboll T, Rabol R, et al. Four weeks of nearnormalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 2009;52:199-207. https://doi.org/10.1007/s00125-008-1195-5
  18. Zhang Q, Delessa CT, Augustin R, et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 2021;33:833-44.e5. https://doi.org/10.1016/j.cmet.2021.01.015
  19. Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 2013;5:209ra151. https://doi.org/10.1126/scitranslmed.3007218
  20. Gasbjerg LS, Helsted MM, Hartmann B, et al. Separate and combined glucometabolic effects of endogenous glucosedependent insulinotropic polypeptide and glucagon-like peptide 1 in healthy individuals. Diabetes 2019;68:906-17. https://doi.org/10.2337/db18-1123
  21. Willard FS, Douros JD, Gabe MB, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 2020;5:e140532. https://doi.org/10.1172/jci.insight.140532
  22. Rosenstock J, Wysham C, Frias JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 2021;398:143-55. Erratum in: Lancet 2021;398:212. https://doi.org/10.1016/S0140-6736(21)01324-6
  23. Frias JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021;385:503-15. https://doi.org/10.1056/NEJMoa2107519
  24. Ludvik B, Giorgino F, Jodar E, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 2021;398:583-98. https://doi.org/10.1016/S0140-6736(21)01443-4
  25. Del Prato S, Kahn SE, Pavo I, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021;398:1811-24. https://doi.org/10.1016/S0140-6736(21)02188-7
  26. Dahl D, Onishi Y, Norwood P, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA 2022;327:534-45. https://doi.org/10.1001/jama.2022.0078
  27. Al-Massadi O, Ferno J, Dieguez C, Nogueiras R, Quinones M. Glucagon control on food intake and energy balance. Int J Mol Sci 2019;20:3905. https://doi.org/10.3390/ijms20163905
  28. Kazda CM, Ding Y, Kelly RP, et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 2016;39:1241-9. Erratum in: Diabetes Care 2017;40:808. https://doi.org/10.2337/dc15-1643
  29. Kazierad DJ, Chidsey K, Somayaji VR, Bergman AJ, Calle RA. Efficacy and safety of the glucagon receptor antagonist PF06291874: a 12-week, randomized, dose-response study in patients with type 2 diabetes mellitus on background metformin therapy. Diabetes Obes Metab 2018;20:2608-16. https://doi.org/10.1111/dom.13440
  30. Pettus JH, D'Alessio D, Frias JP, et al. Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy: a 12-week dose-ranging study. Diabetes Care 2020;43:161-8. https://doi.org/10.2337/dc19-1328
  31. Ma T, Huo S, Xu B, et al. A novel long-acting oxyntomodulin analogue eliminates diabetes and obesity in mice. Eur J Med Chem 2020;203:112496. https://doi.org/10.1016/j.ejmech.2020.112496
  32. Spezani R, Mandarim-de-Lacerda CA. The current significance and prospects for the use of dual receptor agonism GLP-1/Glucagon. Life Sci 2022;288:120188. https://doi.org/10.1016/j.lfs.2021.120188
  33. Nahra R, Wang T, Gadde KM, et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care 2021;44:1433-42. https://doi.org/10.2337/dc20-2151
  34. Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev 2015;67:564-600. https://doi.org/10.1124/pr.115.010629
  35. Dunican KC, Adams NM, Desilets AR. The role of pramlintide for weight loss. Ann Pharmacother 2010;44:538-45. https://doi.org/10.1345/aph.1M210
  36. Ravussin E, Smith SR, Mitchell JA, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 2009;17:1736-43. https://doi.org/10.1038/oby.2009.184
  37. Aronne LJ, Halseth AE, Burns CM, Miller S, Shen LZ. Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial. Obesity (Silver Spring) 2010;18:1739-46. https://doi.org/10.1038/oby.2009.478
  38. Enebo LB, Berthelsen KK, Kankam M, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2.4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 2021;397:1736-48. https://doi.org/10.1016/S0140-6736(21)00845-X