DOI QR코드

DOI QR Code

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Man Su (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Soo-Keun (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Sang-Keun (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Ryu, Choong-Min (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2021.10.26
  • 심사 : 2022.02.24
  • 발행 : 2022.07.31

초록

Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

키워드

과제정보

We thank Dr. Youn-Sig Kwak (Gyeongsang National University, South Korea) for providing S. griseus S4-7. This research was supported by grants from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020M3E9A1111636), Cooperative Research Program for Agriculture Science and Technology Development (PJ014790022021) from Rural Development Administration, and the KRIBB Initiative Program, South Korea.

참고문헌

  1. Aulakh, J.S., Malik, A.K., Kaur, V., and Schmitt-Kopplin, P. (2005). A review on solid phase micro extraction-high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Crit. Rev. Anal. Chem. 35, 71-85. https://doi.org/10.1080/10408340590947952
  2. Baumbach, J.I. (2006). Process analysis using ion mobility spectrometry. Anal. Bioanal. Chem. 384, 1059-1070. https://doi.org/10.1007/s00216-005-3397-8
  3. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Verges, M.C.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H., et al. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103. https://doi.org/10.1186/s40168-020-00875-0
  4. Blake, R.S., Monks, P.S., and Ellis, A.M. (2009). Proton-transfer reaction mass spectrometry. Chem. Rev. 109, 861-896. https://doi.org/10.1021/cr800364q
  5. Cha, J.Y., Han, S., Hong, H.J., Cho, H., Kim, D., Kwon, Y., Kwon, S.K., Crusemann, M., Bok Lee, Y., Kim, J.F., et al. (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10, 119-129. https://doi.org/10.1038/ismej.2015.95
  6. Cho, G., Kim, J., Park, C.G., Nislow, C., Weller, D.M., and Kwak, Y.S. (2017). Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi. Open Biol. 7, 170075. https://doi.org/10.1098/rsob.170075
  7. Chung, J.H., Song, G.C., and Ryu, C.M. (2016). Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90, 677-687. https://doi.org/10.1007/s11103-015-0344-8
  8. Claeson, A.S., Sandstrom, M., and Sunesson, A.L. (2007). Volatile organic compounds (VOCs) emitted from materials collected from buildings affected by microorganisms. J. Environ. Monit. 9, 240-245. https://doi.org/10.1039/B614766F
  9. Farag, M.A., Ryu, C.M., Sumner, L.W., and Pare, P.W. (2006). GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67, 2262-2268. https://doi.org/10.1016/j.phytochem.2006.07.021
  10. Farag, M.A., Song, G.C., Park, Y.S., Audrain, B., Lee, S., Ghigo, J.M., Kloepper, J.W., and Ryu, C.M. (2017). Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nat. Protoc. 12, 1359-1377. https://doi.org/10.1038/nprot.2017.023
  11. Farag, M.A., Zhang, H., and Ryu, C.M. (2013). Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39, 1007-1018. https://doi.org/10.1007/s10886-013-0317-9
  12. Fincheira, P. and Quiroz, A. (2018). Microbial volatiles as plant growth inducers. Microbiol. Res. 208, 63-75. https://doi.org/10.1016/j.micres.2018.01.002
  13. Garbeva, P., Hordijk, C., Gerards, S., and de Boer, W. (2014a). Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5, 289. https://doi.org/10.3389/fmicb.2014.00289
  14. Garbeva, P., Hordijk, C., Gerards, S., and de Boer, W. (2014b). Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol. Ecol. 87, 639-649. https://doi.org/10.1111/1574-6941.12252
  15. Garbeva, P. and Weisskopf, L. (2020). Airborne medicine: bacterial volatiles and their influence on plant health. New Phytol. 226, 32-43. https://doi.org/10.1111/nph.16282
  16. Hu, L., Liang, J., Chingin, K., Hang, Y., Wu, X., and Chen, H. (2016). Early release of 1-pyrroline by Pseudomonas aeruginosa cultures discovered using ambient corona discharge ionization mass spectrometry. RSC Adv. 6, 8449-8455. https://doi.org/10.1039/C5RA24594J
  17. Insam, H. and Seewald, M.S.A. (2010). Volatile organic compounds (VOCs) in soils. Biol. Fertil. Soils 46, 199-213. https://doi.org/10.1007/s00374-010-0442-3
  18. Kai, M. (2020). Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Front. Microbiol. 11, 559. https://doi.org/10.3389/fmicb.2020.00559
  19. Kai, M., Crespo, E., Cristescu, S.M., Harren, F.J., Francke, W., and Piechulla, B. (2010). Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 88, 965-976. https://doi.org/10.1007/s00253-010-2810-1
  20. Kim, M.S., Kim, H.R., Jeong, D.E., and Choi, S.K. (2021a). Cytosine base editor-mediated multiplex genome editing to accelerate discovery of novel antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Front. Microbiol. 12, 691839. https://doi.org/10.3389/fmicb.2021.691839
  21. Kim, S., Kim, H., Park, K., Cho, D.J., Kim, M.K., Kwon, C., and Yun, H.S. (2021b). Synaptotagmin 5 controls SYP132-VAMP721/722 interaction for Arabidopsis immunity to Pseudomonas syringae pv tomato DC3000. Mol. Cells 44, 670-679. https://doi.org/10.14348/molcells.2021.0100
  22. Kloepper, J.W., Ryu, C.M., and Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94, 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  23. Kong, H.G., Shin, T.S., Kim, T.H., and Ryu, C.M. (2018). Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front. Plant Sci. 9, 90. https://doi.org/10.3389/fpls.2018.00090
  24. Kong, H.G., Song, G.C., Sim, H.J., and Ryu, C.M. (2021). Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15, 397-408. https://doi.org/10.1038/s41396-020-00759-z
  25. Lee, S.M., Kong, H.G., Song, G.C., and Ryu, C.M. (2021). Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 15, 330-347. https://doi.org/10.1038/s41396-020-00785-x
  26. Lemfack, M.C., Gohlke, B.O., Toguem, S.M.T., Preissner, S., Piechulla, B., and Preissner, R. (2018). mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res. 46(D1), D1261-D1265. https://doi.org/10.1093/nar/gkx1016
  27. Lemfack, M.C., Nickel, J., Dunkel, M., Preissner, R., and Piechulla, B. (2014). mVOC: a database of microbial volatiles. Nucleic Acids Res. 42(Database issue), D744-D748. https://doi.org/10.1093/nar/gkt1250
  28. Liang, J., Hang, Y., Chingin, K., Hu, L., and Chen, H. (2014). Rapid differentiation of microbial cultures based on the analysis of headspace volatiles by atmospheric pressure chemical ionization mass spectrometry. RSC Adv. 4, 25326-25329. https://doi.org/10.1039/c4ra03407d
  29. Lindinger, W., Hansel, A., and Jordan, A. (1998). On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 173, 191-241. https://doi.org/10.1016/S0168-1176(97)00281-4
  30. Martin-Sanchez, L., Ariotti, C., Garbeva, P., and Vigani, G. (2020). Investigating the effect of belowground microbial volatiles on plant nutrient status: perspective and limitations. J. Plant Interact. 15, 188-195. https://doi.org/10.1080/17429145.2020.1776408
  31. Merkle, S., Kleeberg, K., and Fritsche, J. (2015). Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis-a review. Chromatography (Basel) 2, 293-381. https://doi.org/10.3390/chromatography2030293
  32. Nicholson, W.L. and Maughan, H. (2002). The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 168 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J. Bacteriol. 184, 4936-4940. https://doi.org/10.1128/JB.184.17.4936-4940.2002
  33. Ryu, C.M. (2015). Bacterial volatiles as airborne signals for plants and bacteria. In Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, B. Lugtenberg, eds. (Cham, Switzerland: Springer International Publishing), pp. 53-61.
  34. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Pare, P.W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134, 1017-1026. https://doi.org/10.1104/pp.103.026583
  35. Schenkel, D., Macia-Vicente, J.G., Bissell, A., and Splivallo, R. (2018). Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds. Front. Microbiol. 9, 1847. https://doi.org/10.3389/fmicb.2018.01847
  36. Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J., and Garbeva, P. (2015). Volatile affairs in microbial interactions. ISME J. 9, 2329-2335. https://doi.org/10.1038/ismej.2015.42
  37. Schmidt, R., Etalo, D.W., de Jager, V., Gerards, S., Zweers, H., de Boer, W., and Garbeva, P. (2016). Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6, 1495.
  38. Sharifi, R. and Ryu, C.M. (2018a). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann. Bot. 122, 349-358. https://doi.org/10.1093/aob/mcy108
  39. Sharifi, R. and Ryu, C.M. (2018b). Sniffing bacterial volatile compounds for healthier plants. Curr. Opin. Plant Biol. 44, 88-97. https://doi.org/10.1016/j.pbi.2018.03.004
  40. So, Y., Park, S.Y., Park, E.H., Park, S.H., Kim, E.J., Pan, J.G., and Choi, S.K. (2017). A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front. Microbiol. 8, 1167. https://doi.org/10.3389/fmicb.2017.01167
  41. Song, G.C., Riu, M., and Ryu, C.M. (2019). Beyond the two compartments Petri-dish: optimising growth promotion and induced resistance in cucumber exposed to gaseous bacterial volatiles in a miniature greenhouse system. Plant Methods 15, 9. https://doi.org/10.1186/s13007-019-0395-y
  42. Song, G.C., Sim, H.J., Kim, S.G., and Ryu, C.M. (2016). Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. Ann. Bot. 118, 821-831. https://doi.org/10.1093/aob/mcw152
  43. Tait, E., Perry, J.D., Stanforth, S.P., and Dean, J.R. (2014). Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. J. Chromatogr. Sci. 52, 363-373. https://doi.org/10.1023/A:1014239330510
  44. Teng, F., Murray, B.E., and Weinstock, G.M. (1998). Conjugal transfer of plasmid DNA from Escherichia coli to enterococci: a method to make insertion mutations. Plasmid 39, 182-186. https://doi.org/10.1006/plas.1998.1336
  45. Uppalapati, S.R., Ishiga, Y., Wangdi, T., Kunkel, B.N., Anand, A., Mysore, K.S., and Bender, C.L. (2007). The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 20, 955-965. https://doi.org/10.1094/MPMI-20-8-0955
  46. Vespermann, A., Kai, M., and Piechulla, B. (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73, 5639-5641. https://doi.org/10.1128/AEM.01078-07
  47. Weisskopf, L., Schulz, S., and Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 19, 391-404. https://doi.org/10.1038/s41579-020-00508-1
  48. Wu, L., Li, X., Ma, L., Borriss, R., Wu, Z., and Gao, X. (2018). Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. J. Exp. Bot. 69, 5625-5635. https://doi.org/10.1093/jxb/ery326
  49. Wu, Y., Zhou, J., Li, C., and Ma, Y. (2019). Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Microbiologyopen 8, e00813.
  50. Yi, H.S., Ahn, Y.R., Song, G.C., Ghim, S.Y., Lee, S., Lee, G., and Ryu, C.M. (2016). Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front. Microbiol. 7, 993. https://doi.org/10.3389/fmich.2016.00993
  51. Zhang, Z., Yang, M.J., and Pawliszyn, J. (1994). Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal. Chem. 66, 844A-853A. https://doi.org/10.1021/ac00089a716