DOI QR코드

DOI QR Code

Quantitative Frameworks for Multivalent Macromolecular Interactions in Biological Linear Lattice Systems

  • Choi, Jaejun (School of Biological Sciences, Seoul National University) ;
  • Kim, Ryeonghyeon (School of Biological Sciences, Seoul National University) ;
  • Koh, Junseock (School of Biological Sciences, Seoul National University)
  • Received : 2022.03.06
  • Accepted : 2022.03.28
  • Published : 2022.07.31

Abstract

Multivalent macromolecular interactions underlie dynamic regulation of diverse biological processes in ever-changing cellular states. These interactions often involve binding of multiple proteins to a linear lattice including intrinsically disordered proteins and the chromosomal DNA with many repeating recognition motifs. Quantitative understanding of such multivalent interactions on a linear lattice is crucial for exploring their unique regulatory potentials in the cellular processes. In this review, the distinctive molecular features of the linear lattice system are first discussed with a particular focus on the overlapping nature of potential protein binding sites within a lattice. Then, we introduce two general quantitative frameworks, combinatorial and conditional probability models, dealing with the overlap problem and relating the binding parameters to the experimentally measurable properties of the linear lattice-protein interactions. To this end, we present two specific examples where the quantitative models have been applied and further extended to provide biological insights into specific cellular processes. In the first case, the conditional probability model was extended to highlight the significant impact of nonspecific binding of transcription factors to the chromosomal DNA on gene-specific transcriptional activities. The second case presents the recently developed combinatorial models to unravel the complex organization of target protein binding sites within an intrinsically disordered region (IDR) of a nucleoporin. In particular, these models have suggested a unique function of IDRs as a molecular switch coupling distinct cellular processes. The quantitative models reviewed here are envisioned to further advance for dissection and functional studies of more complex systems including phase-separated biomolecular condensates.

Keywords

Acknowledgement

This work was supported by Samsung Science & Technology Foundation and Research (SSTF-BA1802-09) and the National Research Foundation (2019R1C1C1011640).

References

  1. Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298. https://doi.org/10.1038/nrm.2017.7
  2. Bayliss, R., Littlewood, T., and Stewart, M. (2000). Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102, 99-108. https://doi.org/10.1016/S0092-8674(00)00014-3
  3. Berg, O.G., Winter, R.B., and von Hippel, P.H. (1981). Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929-6948. https://doi.org/10.1021/bi00527a028
  4. Bintu, L., Buchler, N.E., Garcia, H.G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T., and Phillips, R. (2005). Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev. 15, 125-135. https://doi.org/10.1016/j.gde.2005.02.006
  5. Brewster, R.C., Weinert, F.M., Garcia, H.G., Song, D., Rydenfelt, M., and Phillips, R. (2014). The transcription factor titration effect dictates level of gene expression. Cell 156, 1312-1323. https://doi.org/10.1016/j.cell.2014.02.022
  6. Bujalowski, W. (2006). Thermodynamic and kinetic methods of analyses of protein-nucleic acid interactions. From simpler to more complex systems. Chem. Rev. 106, 556-606. https://doi.org/10.1021/cr040462l
  7. Bujalowski, W., Lohman, T.M., and Anderson, C.F. (1989). On the cooperative binding of large ligands to a one-dimensional homogeneous lattice: the generalized three-state lattice model. Biopolymers 28, 1637-1643. https://doi.org/10.1002/bip.360280912
  8. Bujalowski, W., Overman, L.B., and Lohman, T.M. (1988). Binding mode transitions of Escherichia coli single strand binding protein-singlestranded DNA complexes. Cation, anion, pH, and binding density effects. J. Biol. Chem. 263, 4629-4640. https://doi.org/10.1016/S0021-9258(18)68829-5
  9. Cho, B., Choi, J., Kim, R., Yun, J.N., Choi, Y., Lee, H.H., and Koh, J. (2021). Thermodynamic models for assembly of intrinsically disordered protein hubs with multiple interaction partners. J. Am. Chem. Soc. 143, 12509-12523. https://doi.org/10.1021/jacs.1c00811
  10. Choi, K.Y., Satterberg, B., Lyons, D.M., and Elion, E.A. (1994). Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499-512. https://doi.org/10.1016/0092-8674(94)90427-8
  11. Cortese, M.S., Uversky, V.N., and Dunker, A.K. (2008). Intrinsic disorder in scaffold proteins: getting more from less. Prog. Biophys. Mol. Biol. 98, 85-106. https://doi.org/10.1016/j.pbiomolbio.2008.05.007
  12. Cumberworth, A., Lamour, G., Babu, M.M., and Gsponer, J. (2013). Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem. J. 454, 361-369. https://doi.org/10.1042/BJ20130545
  13. Dragan, A.I., Read, C.M., Makeyeva, E.N., Milgotina, E.I., Churchill, M.E., Crane-Robinson, C., and Privalov, P.L. (2004). DNA binding and bending by HMG boxes: energetic determinants of specificity. J. Mol. Biol. 343, 371-393. https://doi.org/10.1016/j.jmb.2004.08.035
  14. Dunker, A.K., Cortese, M.S., Romero, P., Iakoucheva, L.M., and Uversky, V.N. (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129-5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x
  15. Epstein, I.R. (1978). Cooperative and non-cooperative binding of large ligands to a finite one-dimensional lattice. A model for ligand-oligonucleotide interactions. Biophys. Chem. 8, 327-339. https://doi.org/10.1016/0301-4622(78)80015-5
  16. Freire, E., Schon, A., and Velazquez-Campoy, A. (2009). Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol. 455, 127-155. https://doi.org/10.1016/S0076-6879(08)04205-5
  17. Frey, S. and Gorlich, D. (2007). A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512-523. https://doi.org/10.1016/j.cell.2007.06.024
  18. Fung, H.Y.J., Birol, M., and Rhoades, E. (2018). IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Struct. Biol. 49, 36-43. https://doi.org/10.1016/j.sbi.2017.12.007
  19. Ha, T., Kaiser, C., Myong, S., Wu, B., and Xiao, J. (2022). Next generation single-molecule techniques: imaging, labeling, and manipulation in vitro and in cellulo. Mol. Cell 82, 304-314. https://doi.org/10.1016/j.molcel.2021.12.019
  20. Hamming, R.W. (1986). Numerical Methods for Scientists and Engineers (2nd Edition) (New York, NY: Dover).
  21. Holbrook, J.A., Tsodikov, O.V., Saecker, R.M., and Record, M.T., Jr. (2001). Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface saltbridges coupled to DNA binding. J. Mol. Biol. 310, 379-401. https://doi.org/10.1006/jmbi.2001.4768
  22. Hong, S., Choi, S., Kim, R., and Koh, J. (2020). Mechanisms of macromolecular interactions mediated by protein intrinsic disorder. Mol. Cells 43, 899-908. https://doi.org/10.14348/molcells.2020.0186
  23. Jen-Jacobson, L., Engler, L.E., and Jacobson, L.A. (2000). Structural and thermodynamic strategies for site-specific DNA binding proteins. Structure 8, 1015-1023. https://doi.org/10.1016/S0969-2126(00)00501-3
  24. Kadota, S., Ou, J., Shi, Y., Lee, J.T., Sun, J., and Yildirim, E. (2020). Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat. Commun. 11, 2606. https://doi.org/10.1038/s41467-020-16394-3
  25. Kao-Huang, Y., Revzin, A., Butler, A.P., O'Conner, P., Noble, D.W., and von Hippel, P.H. (1977). Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo. Proc. Natl. Acad. Sci. U. S. A. 74, 4228-4232. https://doi.org/10.1073/pnas.74.10.4228
  26. Kasper, L.H., Brindle, P.K., Schnabel, C.A., Pritchard, C.E., Cleary, M.L., and van Deursen, J.M. (1999). CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol. Cell. Biol. 19, 764-776. https://doi.org/10.1128/MCB.19.1.764
  27. Koh, J. and Blobel, G. (2015). Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161, 1361-1373. https://doi.org/10.1016/j.cell.2015.05.013
  28. Koh, J., Saecker, R.M., and Record, M.T., Jr. (2008). DNA binding mode transitions of Escherichia coli HU(alphabeta): evidence for formation of a bent DNA--protein complex on intact, linear duplex DNA. J. Mol. Biol. 383, 324-346. https://doi.org/10.1016/j.jmb.2008.07.024
  29. Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H.R., and Cordes, V.C. (2004). Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261-4277. https://doi.org/10.1091/mbc.E04-03-0165
  30. Lifson, S. (1964). Partition functions of linear-chain molecules. J. Chem. Phys. 40, 3705-3710. https://doi.org/10.1063/1.1725077
  31. Lohman, T.M., deHaseth, P.L., and Record, M.T., Jr. (1980). Pentalysine-deoxyribonucleic acid interactions: a model for the general effects of ion concentrations on the interactions of proteins with nucleic acids. Biochemistry 19, 3522-3530. https://doi.org/10.1021/bi00556a017
  32. Lyon, A.S., Peeples, W.B., and Rosen, M.K. (2021). A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215-235. https://doi.org/10.1038/s41580-020-00303-z
  33. Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L.K., Forster, F., Hyman, A.A., Plitzko, J.M., and Baumeister, W. (2016). Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969-972. https://doi.org/10.1126/science.aad8857
  34. Mark, W.Y., Liao, J.C., Lu, Y., Ayed, A., Laister, R., Szymczyna, B., Chakrabartty, A., and Arrowsmith, C.H. (2005). Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein-protein and protein-DNA interactions? J. Mol. Biol. 345, 275-287. https://doi.org/10.1016/j.jmb.2004.10.045
  35. McGhee, J.D. and von Hippel, P.H. (1974). Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469-489. https://doi.org/10.1016/0022-2836(74)90031-x
  36. Noutsou, M., Duarte, A.M., Anvarian, Z., Didenko, T., Minde, D.P., Kuper, I., de Ridder, I., Oikonomou, C., Friedler, A., Boelens, R., et al. (2011). Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J. Mol. Biol. 405, 773-786. https://doi.org/10.1016/j.jmb.2010.11.013
  37. Oikonomou, C.M. and Jensen, G.J. (2017). Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86, 873-896. https://doi.org/10.1146/annurev-biochem-061516-044741
  38. Privalov, P.L., Dragan, A.I., and Crane-Robinson, C. (2011). Interpreting protein/DNA interactions: distinguishing specific from non-specific and electrostatic from non-electrostatic components. Nucleic Acids Res. 39, 2483-2491. https://doi.org/10.1093/nar/gkq984
  39. Radu, A., Moore, M.S., and Blobel, G. (1995). The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215-222. https://doi.org/10.1016/0092-8674(95)90331-3
  40. Rajendran, S., Jezewska, M.J., and Bujalowski, W. (1998). Human DNA polymerase beta recognizes single-stranded DNA using two different binding modes. J. Biol. Chem. 273, 31021-31031. https://doi.org/10.1074/jbc.273.47.31021
  41. Record, M.T., Jr., Lohman, M.L., and De Haseth, P. (1976). Ion effects on ligand-nucleic acid interactions. J. Mol. Biol. 107, 145-158. https://doi.org/10.1016/S0022-2836(76)80023-X
  42. Schellman, J.A. (1974). Cooperative multisite binding to DNA. Isr. J. Chem. 12, 219-238. https://doi.org/10.1002/ijch.197400021
  43. Schoch, R.L., Kapinos, L.E., and Lim, R.Y. (2012). Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes. Proc. Natl. Acad. Sci. U. S. A. 109, 16911-16916. https://doi.org/10.1073/pnas.1208440109
  44. Segal, E. and Widom, J. (2009). From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443-456. https://doi.org/10.1038/nrg2591
  45. Shin, Y. and Brangwynne, C.P. (2017). Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382. https://doi.org/10.1126/science.aaf4382
  46. Shrader, T.E. and Crothers, D.M. (1989). Artificial nucleosome positioning sequences. Proc. Natl. Acad. Sci. U. S. A. 86, 7418-7422. https://doi.org/10.1073/pnas.86.19.7418
  47. Sigal, Y.M., Zhou, R., and Zhuang, X. (2018). Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880-887. https://doi.org/10.1126/science.aau1044
  48. Stracy, M., Schweizer, J., Sherratt, D.J., Kapanidis, A.N., Uphoff, S., and Lesterlin, C. (2021). Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins. Mol. Cell 81, 1499-1514. e6. https://doi.org/10.1016/j.molcel.2021.01.039
  49. Teif, V.B. (2007). General transfer matrix formalism to calculate DNA-protein-drug binding in gene regulation: application to OR operator of phage lambda. Nucleic Acids Res. 35, e80. https://doi.org/10.1093/nar/gkm268
  50. Tsodikov, O.V., Holbrook, J.A., Shkel, I.A., and Record, M.T., Jr. (2001). Analytic binding isotherms describing competitive interactions of a protein ligand with specific and nonspecific sites on the same DNA oligomer. Biophys. J. 81, 1960-1969. https://doi.org/10.1016/S0006-3495(01)75847-X
  51. von Hippel, P.H., Revzin, A., Gross, C.A., and Wang, A.C. (1974). Nonspecific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. Proc. Natl. Acad. Sci. U. S. A. 71, 4808-4812. https://doi.org/10.1073/pnas.71.12.4808
  52. Widom, J. (1999). Equilibrium and dynamic nucleosome stability. Methods Mol. Biol. 119, 61-77.
  53. Wodarz, A. and Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59-88. https://doi.org/10.1146/annurev.cellbio.14.1.59
  54. Wright, P.E. and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18-29. https://doi.org/10.1038/nrm3920
  55. Wyman, J. and Gill, S.J. (1990). Binding and Linkage: Functional Chemistry of Biological Macromolecules (Mill Valley, CA: University Science Books).
  56. Xue, B., Romero, P.R., Noutsou, M., Maurice, M.M., Rudiger, S.G., William, A.M., Jr., Mizianty, M.J., Kurgan, L., Uversky, V.N., and Dunker, A.K. (2013). Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Lett. 587, 1587-1591. https://doi.org/10.1016/j.febslet.2013.04.006