DOI QR코드

DOI QR Code

Evaluation of hydropower dam water supply capacity (II): estimation of water supply yield range of hydropower dams considering probabilistic inflow

발전용댐 이수능력 평가 연구(II): 확률론적 유입량을 고려한 발전용댐 용수공급능력 범위 산정

  • Jeong, Gimoon (Korea Rural Community Corporation, Rural Research Institute) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University) ;
  • Kim, Dong Hyun (Department of Civil Engineering, Hongik University) ;
  • Lee, Seung Oh (Department of Civil Engineering, Hongik University) ;
  • Kim, Taesoon (Hangang Hydro Power Site, Korea Hydro & Nuclear Power Co., LTD.)
  • 정기문 (한국농어촌공사 농어촌연구원) ;
  • 강두선 (경희대학교 사회기반시스템공학과) ;
  • 김동현 (홍익대학교 토목공학과) ;
  • 이승오 (홍익대학교 토목공학과) ;
  • 김태순 (한국수력원자력(주) 한강수력본부 수자원관리부)
  • Received : 2022.05.15
  • Accepted : 2022.06.08
  • Published : 2022.07.31

Abstract

Identifying the available water resources amount is an essential process in establishing a sustainable water resources management plan. Dam facility is a major infrastructure storing and supplying water during the dry season, and the water supply yield of the dam varies depending on dam inflow conditions or operation rule. In South Korea, water supply yield of dam is calculated by reservoir simulation based on observed historical dam inflow data. However, the water supply capacity of a dam can be underestimated or overestimated depending on the existence of historical drought events during the simulation period. In this study, probabilistic inflow data was generated and used to estimate the appropriate range of the water supply yield of hydropower dams. That is, a method for estimating the probabilistic dam inflow that fluctuates according to climatic and socio-economic conditions and the range of water supply yield for hydropower dams was presented, and applied to hydropower dams located in the Han river in South Korea. It is expected that the understanding water supply yield of the hydropower dams will become more important to respond to climate change in the future, and this study will contribute to national water resources management planning by providing potential range of water supply yield of hydropower dams.

이용 가능한 수자원의 규모를 파악하는 것은 지속가능한 이수계획 수립에 필수적인 과정이다. 특히 댐 시설은 용수를 저류하여 갈수기에 공급하기 위한 주요 수공 시설물로써 댐 유입량 및 댐 운영 방안에 따라 댐의 용수공급능력은 크게 달라질 수 있다. 국내에서는 과거 유입량 관측자료를 바탕으로 저수지 운영모의 방법을 통해 댐 용수공급능력을 산정하고 있으며, 이때 관측기간 내 가뭄발생 여부에 따라 용수공급능력이 과소 혹은 과다 추정되는 불확실성을 내포하며, 이는 수자원 계획 수립의 신뢰도를 저해하는 요인이 될 수 있다. 본 연구에서는 발전용댐의 용수공급능력 적정 범위를 산정하기 위해 확률론적 유입량 자료를 활용하였다. 즉, 다양한 기후 및 사회경제 변화를 반영한 확률론적 댐 유입량 및 이를 활용한 발전용댐 용수공급능력의 범위를 산정하는 방법을 제시하였으며, 국내 한강수계에 위치한 발전용댐을 대상으로 분석을 수행하였다. 향후 기후변화에 대응하기 위한 발전용댐의 용수공급능력 파악은 더욱 중요해질 것으로 예상되며, 본 연구 결과는 다양한 기후 시나리오에서의 댐 용수공급능력 범위를 정량적으로 파악함으로써 국내 수자원 계획 수립에 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 1) 한국수력원자력(주) 「발전용댐 이·치수 능력검토 및 수문학적 안정성 평가 용역」의 지원과 2) 환경부 「기후변화특성화대학원사업」의 지원으로 수행되었습니다. 이에 감사드립니다.

References

  1. Chen, W.B., Liu, W.C., and Hsu, M.H. (2012). "Comparison of ANN approach with 2D and 3D hydrodynamic models for simulating estuary water stage." Advances in Engineering Software, Vol. 45, No. 1, pp. 69-79. https://doi.org/10.1016/j.advengsoft.2011.09.018
  2. Choi, J., Jeong, G., Kang, D., Ahn, J., and Kim, T. (2021). "Classification of hydropower dam in North-han River based on water storage characteristics." Journal of Korea Water Resources Association, Vol. 54, No. 8, pp. 567-576. https://doi.org/10.3741/JKWRA.2021.54.8.567
  3. Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  4. Ivanov, V.Y., Bras, R.L., and Curtis, D.C. (2007). "A weather generator for hydrological, ecological, and agricultural applications." Water Resources Research, Vol. 43, No. 10, W10406. https://doi.org/10.1029/2006WR005364
  5. Luo, B., Fang, Y., Wang, H., and Zang, D. (2020). "Reservoir inflow prediction using a hybrid model based on deep learning." IOP Conference Series: Materials Science and Engineering, IOP Publishing, Shanghai, China, Vol. 715, No. 1, 012044.
  6. Ministry of Construction and Traffic (MOCT) and K-water (1997). Reevaluation of existing dams (Han river basin).
  7. Ministry of Construction and Traffic (MOCT) and K-water (2010). Reevaluation of existing dams and optimum allocation of the capacity.
  8. Ministry of Construction and Traffic (MOCT) and K-water (2011). The national river basin investigation 2011.
  9. Ministry of Land, Infrastructure and Transport (MOLIT) and K-water (2016). Efficient utilization of existing water resources.
  10. Tran, Q.K., and Song, S.K., (2017). "Water level forecasting based on deep learning: A use case of Trinity River-Texas-The United States." Journal of Korean Institute of Information Scientists and Engineers, Vol. 44, No. 6, pp. 607-612.
  11. Tran, T.D., Tran, V.N., and Kim, J. (2021). "Improving the accuracy of dam inflow predictions using a long short-term memory network coupled with wavelet transform and predictor selection." Mathematics, Vol. 9, No. 5, 551. https://doi.org/10.3390/math9050551
  12. US. Army Corps of Engineers (USACE) (2021). HEC-ResSim: Reservoir system simulation user's manual version 3.3. US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center (HEC). CPD-82, Davis, CA, U.S.
  13. Yeo, W.K, Seo, Y.M, Lee, S.Y, and Jee, H.K (2010) "Study on water stage prediction using hybrid model of artificial neural network and genetic algorithm." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 721-731. https://doi.org/10.3741/JKWRA.2010.43.8.721
  14. Zhang, Z., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural area." Journal of Hydrology, Vol. 561, pp. 918-929. https://doi.org/10.1016/j.jhydrol.2018.04.065