DOI QR코드

DOI QR Code

구성품 변경에 따른 항공기 공허중량 무게중심 수정 및 검증

Correction of Aircraft Empty Weight CG due to LRU Modification

  • 투고 : 2022.04.16
  • 심사 : 2022.06.16
  • 발행 : 2022.08.01

초록

군용항공기는 노후화로 인해 LRU 개조가 필요한 경우가 많다. 최근 KA-O 공중통제기에 대해 사출좌석 교체 및 항공전자장비 추가 등 LRU 개조가 진행되면서 연료소비곡선 상의 항공기 운용 무게중심이 요구 사양 범위를 벗어나게 되었다. 이러한 범위를 벗어난 무게중심은 적절한 방법을 도입하여 수정해야 한다. 본 연구에서는 KA-O와 같은 군용 소형항공기의 LRU 개조로 인해 변경된 공허중량 무게중심을 수정하고 검증하는 절차를 제안한다. 제안하는 방법에서는 LRU 수정에 따른 공허중량 무게중심의 변화를 종합적으로 관찰한 뒤, 다수의 밸러스트를 엔진 설치대에 추가되어 연료소비곡선의 공허중량 무게중심을 안전한 작동 범위로 복원시킨다. 제안된 밸러스트 배치는 다양한 작동 조건에 대한 응력 및 피로해석을 통해 설치를 검증한다. 공허중량 무게중심 수정에 대한 공개 정보가 많지 않은 점을 고려할 때 본 연구는 항공기 개조 시 공허중량 무게중심을 수정하고 검증하기 위한 절차를 제시한다는 점에서 큰 의의가 있다고 사료된다.

LRU (Line Replacement Unit) modifications are often required for military aircraft due to aging. Recently, LRU modifications were proceeded for KA-O (Armed Airborne Controller) by replacing the ejection seat and adding avionic equipment, which made the aircraft's operational CG (Center of Gravity) on fuel consumption curve become out of the range of the specification requested. The off-ranged CG should be corrected by introducing an appropriate method. This study proposes a procedure for revising and verifying the empty weight CG altered due to LRU modification for small military aircraft (e.g., KA-O). In the proposed method, first, the change of empty weight CG of KA-O due to the LRU modifications is comprehensively examined. Then, several ballast masses are added to the engine mount strut to restore the empty weight CG on the fuel consumption curve to a safe operational range. The installations are verified via stress and fatigue analysis for various operating conditions. Considering that open information is not very available for the revision of empty weight CG, this study is valuable because it presents an established procedure for correcting and verifying empty weight CG during aircraft modification.

키워드

참고문헌

  1. Kim, C. S., Cho, I. J. and Hwang, B. M., "A Study on Flying Qualities for the Center of Gravity Travel of the Aircraft," The Journal of Aerospace Industry, Vol. 83, 2017, pp. 1~21.
  2. Department of Defense, MIL-HDBK-516C, "Airwothiness Certification Criteria," 2014.
  3. Department of Defense, JSSG-2006, "Aircraft Structure," 1998.
  4. Department of Defense, MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," 1997.
  5. Choi, J. H., Park, S. J., Lee, J. W., Kwon, N. U. and Kim, S. U., "Research on Quality improvement of the Cockpit exit set of The K0-0 basic training aircraft," Journal of the Korea Academia-Industrial Cooperation Society, Vol. 22, No. 9, 2021, pp. 99~105. https://doi.org/10.5762/KAIS.2021.22.9.99
  6. Lee, H. J. and Han, Y. H., Airframe for AMEs 1, Seongandang, 2017.
  7. Federal Aviation Administration, FAA-H-8083-1A, "Aircraft Weight and Balance Hanbook," 2007.
  8. MSC NASTRAN User's Guide.
  9. Bruhn, E. F., Analysis and Design of Flight Vehicle Structure, Jacobs Pub., 1973.
  10. Department of Defense, MIL-STD-810G w/Change 1, "Environmental Engineering Considerations and Laboratory Tests," 2014.
  11. NATO-AECTP-400 (Ed. 3), "Mechanical Environmental Tests," 2006.
  12. Schijve, J., Fatigue of Structures and Materials, Springer Science & Business Media, 2001.
  13. American Welding Society, AWS D1.1, "Structure Welding Code-Steel," 2020.