DOI QR코드

DOI QR Code

SEMI-NEUTRAL GROUPOIDS AND BCK-ALGEBRAS

  • 투고 : 2021.07.06
  • 심사 : 2021.08.05
  • 발행 : 2022.07.31

초록

In this paper, we introduce the notion of a left-almost-zero groupoid, and we generalize two axioms which play important roles in the theory of BCK-algebra using the notion of a projection. Moreover, we investigate a Smarandache disjointness of semi-leftoids.

키워드

참고문헌

  1. P. J. Allen, H. S. Kim, and J. Neggers, Smarandache disjoint in BCK/D-algebras, Sci. Math. Jpn. 61 (2005), no. 3, 447-449.
  2. P. J. Allen, H. S. Kim, and J. Neggers, Bracket functions on groupoids, Commun. Korean Math. Soc. 34 (2019), no. 2, 375-381. https://doi.org/10.4134/CKMS.c180136
  3. J. S. Han, H. S. Kim, and J. Neggers, Strong and ordinary d-algebras, J. Mult.-Valued Logic Soft Comput. 16 (2010), no. 3-5, 331-339.
  4. Y. Huang, BCI-Algebra, Science Press, Beijing, 2006.
  5. A. Iorgulescu, Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008.
  6. K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.
  7. H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. Online e-2006 (2006), 1299-1302.
  8. H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc. 45 (2008), no. 4, 651-661. https://doi.org/10.4134/BKMS.2008.45.4.651
  9. J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa, Seoul, 1994.