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SOLITONS OF KÄHLERIAN NORDEN SPACE-TIME

MANIFOLDS

Praveena Manjappa Mundalamane, Bagewadi Channabasappa Shanthappa,
and Mallannara Siddalingappa Siddesha

Abstract. We study solitons of Kählerian Norden space-time manifolds
and Bochner curvature tensor in almost pseudo symmetric Kählerian

space-time manifolds. It is shown that the steady, expanding or shrinking

solitons depend on different relations of energy density/isotropic pressure,
the cosmological constant, and gravitational constant.

1. Introduction

Relativistic fluid models play a very important role in different branches of
astrophysics, plasma physics, nuclear physics and cosmology. The space-time
of general relativity and cosmology is studied using a four-dimensional pseudo-
Riemannian manifold with Lorentzian metric, (M4, g), where g is considered
as a perfect fluid space-time. See [21] for an introduction to these topics.

The application of pseudo-Riemannian geometry in relativity is discussed by
Neill [18] and by Kaigorodov [15] on the structure of space-time in 1983. In [7],
Chaki and Roy explored that a general relativistic space-time with covariant
constant energy-momentum tensor is Ricci symmetric. Many differential ge-
ometers have been extended the study to the curvature structure of space-time
with special properties [11,22,23].

Definition 1.1. A non-flat Riemannian manifold M of dimension n > 2 is
said to be an almost pseudo symmetric manifold [10] if its curvature tensor R
satisfies the condition

(∇XR)(Y,Z, U,W ) = [A(X) +B(X)]R(Y,Z, U,W )

+A(Y )R(X,Z,U,W ) +A(Z)R(Y,X,U,W )

+A(U)R(Y,Z,X,W ) +A(W )R(Y,Z, U,X),
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where A, B are two non zero 1-forms defined by

g(X, ρ) = A(X), g(X,Q) = B(X),

X, Y, Z,W ∈ χ(M); ρ and Q are called the associated vector fields correspond-
ing to the 1-forms A and B, respectively.

On the other side, the Ricci flow introduced by Hamilton [13] is an excellent
mathematical model for simplifying the structure of the manifold. It is given by
a partial differential equation connecting Ricci and metric tensors. Ricci soli-
tons are self-similar solutions of this partial differential equation. Thus Ricci,
Einstein and conformal Ricci flows are intrinsic geometric flows on a pseudo-
Riemannian manifold, whose fixed points are solitons. Ricci solitons, Einstein
solitons, and conformal Ricci solitons, which generate self-similar solutions of
the Ricci flow, Einstein flow, and conformal Ricci flow are given by:

∂g

∂t
= −2S,

∂g

∂t
= −2(S − r

2
g),

∂g

∂t
= −2(S +

g

n
)− φg, and r = −1.

In the papers (see [4, 16, 17]) solitons are studied to a great extent within the
background of Riemannian geometry. In [8], Cho and Kimura defined an η-
Ricci soliton as

Lξg + 2S + 2ag + 2bη ⊗ η = 0,(1.1)

where g is a pseudo-Riemannian metric, S is the Ricci curvature, ξ is a vector
field, η is a 1-form and a and b are real constants. The data (g, ξ, a, b) in (1.1)
is said to be an η-Ricci soliton in M4; and in particular, if b = 0, (g, ξ, a) is a
Ricci soliton [13] and it is called shrinking, steady or expanding according as a
is negative, zero or positive, respectively [9].

Writing explicitly the Lie derivative (Lξg)(X,Y ) we get

(Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)(1.2)

and from (1.1) we obtain:

S(X,Y ) = −ag(X,Y )− bη(X)η(Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)](1.3)

for any X,Y ∈ χ(M4).
Blaga defined an η-Einstein soliton which is defined as [2]

Lξg + 2S + (2a− r)g + 2bη ⊗ η = 0,(1.4)

where g, S, r, ξ, η, a and b have the meaning are already stated. The data
(g, ξ, a, b) in (1.4) is said to be an η-Einstein soliton in M4; and in particular,
if b = 0, (g, ξ, a) is an Einstein soliton [5]. Using (1.2) in (1.4) we get

S(X,Y )=−(a− r

2
)g(X,Y )− bη(X)η(Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)](1.5)

for any X,Y ∈ χ(M4).
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In [24] Siddique studied a conformal η-Ricci soliton which is defined as

Lξg + 2S + [2a− (φ+
2

n
)]g + 2bη ⊗ η = 0,(1.6)

where φ is a time dependent scalar field, n is dimension of the manifold and g,
S, ξ, η, a, b have the meaning are already stated. The data (g, ξ, a, b) in (1.6)
is said to be a conformal η-Ricci soliton in M4; and in particular, if b = 0,
(g, ξ, a) is a conformal Ricci soliton [1]. Using (1.2) in (1.6) we get

S(X,Y ) = − [a− 1

2
(φ+

1

2
)]g(X,Y )− bη(X)η(Y )

− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)](1.7)

for any X,Y ∈ χ(M4).
In [19, 20] Praveena and Bagewadi studied Ricci solitons and obtained re-

sults in almost pseudo symmetric Kähler manifolds. In [25, 26], Venkatesha
and Kumara studied conformally flat quasi-Einstein space-times with applica-
tions in general relativity and Ricci soliton structure in a perfect fluid space-
time whose time like velocity vector field ξ is torse-forming. Blaga [3] inves-
tigated that if perfect fluid space-time (M4, g) is either an η-Ricci soliton or
an η-Einstein soliton with ξ = grad(f), where f is a scalar function, then
Laplacian of f can be expressed as a linear combination of the cosmological
constant, isotropic pressure, energy density and gravitational constant. Siddiqi
and Siddiqui [24] explored if perfect fluid space-time (M4, g) is a conformal
η-Ricci soliton with ξ = grad(f), where f is a scalar function, then Laplacian
of f can be expressed as a linear combination of the cosmological constant,
isotropic pressure, energy density, gravitational constant and time-dependent
scalar field. Recently, Praveena and Bagewadi [21] studied solitons of an almost
pseudo symmetric Kählerian space-time manifold with different curvature ten-
sors. Motivated by the above studies in this paper we study solitons (an η-Ricci
soliton, an η-Einstein soliton and a conformal-η-Ricci soliton) of Kählerian
Norden space-time manifolds and Bochner curvature tensor in almost pseudo
symmetric Kählerian Norden space-time manifolds.

2. Basic properties of Kählerian Norden space-time manifold

A four-dimensional manifold has general relativistic perfect fluid space-time
such type of manifold is said to be a Kählerian Norden space-time manifold if
it admits Norden metric which satisfies

J2(Z) = −Z, g(JZ, JY ) =− g(Z, Y ), and (∇ZJ)(Y ) = 0,

where J is a (1, 1) tensor and g is a pseudo-Riemannian metric. We know that
in a Kähler Norden manifold the Riemannian curvature tensor R and Ricci
tensor S satisfy [12]

R(JX, JY, Z,W ) = −R(X,Y, Z,W ),(2.1)
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S(JZ, JY ) = −S(J, Y ), S(Z, JY )− S(JZ, Y ) = 0,(2.2)

g(JZ, JY ) = −S(J, Y ), g(Z, JY )− g(JZ, Y ) = 0.(2.3)

Let E1, E2, . . . , En be an orthonarmal frame in a Kähler Norden manifold.
Then g(Ei, Ei) = dim(M) and g(JEi, Ei) = 0.

The scalar curvature r and the ∗-scalar curvature r∗ which are defined as
the trace S(Ei, Ei) and S(JEi, Ei), respectively.

We define the following for almost pseudo symmetric and Bochner curvature
tensor in a Kähler Norden manifold. It is similar to Definition 1.1.

Definition 2.1. A Kähler Norden manifold is called an almost pseudo Bochner
symmetric manifold if its Bochner curvature tensor D of type (0,4) is not zero
and satisfies the condition

(∇XD)(Y, Z, U, V ) = [A(X) +B(X)]D(Y,Z, U, V )

+A(Y )D(X,Z,U, V ) +A(Z)D(Y,X,U, V )

+A(U)D(Y, Z,X, V ) +A(V )D(Y,Z, U,X),(2.4)

where A, B are 1-forms (not simultaneously zero) and D is given by [27],

D(X,Y, Z, U) = R(X,Y, Z, U)− 1

2n+ 4
[g(Y,Z)S(X,U)− S(X,Z)g(Y,U)

+ g(JY, Z)S(JX,U)− S(JX,Z)g(JY, U)

+ S(Y,Z)g(X,U)− g(X,Z)S(Y,U)

+ S(JY, Z)g(JX,U)− g(JX,Z)S(JY, U)

− 2S(Y, JX)g(JZ,U)− 2S(JZ,U)g(JX, Y )]

+
r

(2n+ 2)(2n+ 4)
[g(Y,Z)g(X,U)− g(X,Z)g(Y,U)

+ g(JY, Z)g(JX,U)− g(JX,Z)g(JY, U)

− 2g(JX, Y )g(JZ,U)].(2.5)

Put X = Y = Ei in the above equation we get

K(Y, Z) =
n

2n+ 4
[S(Y,Z)− r

2(n+ 1)
g(Y,Z)− r∗

n
g(JY, Z)].(2.6)

We know that the Einstein equation with cosmological constant for the per-
fect fluid space-time is given by

S(X,Y ) = −(λ− r

2
− kp)g(X,Y ) + k(σ + p)η(X)η(Y ),(2.7)

for any X,Y ∈ χ(M4), where p is the isotropic pressure, σ is the energy-density,
λ is the cosmological constant, k is the gravitational constant, g is the metric
tensor of Minkowski space-time [14], ξ is the velocity vector of the fluid and η is
associated 1-form η(ξ) = −1, S is the Ricci tensor and r is the scalar curvature
of g.
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Here the Ricci tensor S is a functional combination of g and η ⊗ η and is
called quasi-Einstein [6]. Quasi-Einstein manifolds arose during the study of
exact solutions of Einstein field equations.

Consider {Ei}1≤i≤4 an orthonormal frame field, i.e., g(Ei, Ej) = εijδij , i, j ∈
{1, 2, 3, 4} with ε11 = −1, εii = −1, i ∈ {2, 3, 4}, εij = 0, i, j ∈ {1, 2, 3, 4}, i 6= j.
Let ξ = Σ4

i=1ξ
iEi. Then

−1 = g(ξ, ξ) = Σ1≤i,j≤4ξ
iξjg(Ei, Ei) =

4∑
i=1

εii(ξ
i)2,(2.8)

and

η(Ei) = g(Ei, ξ) =

4∑
j=1

ξjg(Ei, Ej) = εiiξ
j .(2.9)

Contracting (2.7) and taking into account that g(ξ, ξ) = −1, we get:

r = 4λ+ k(σ − 3p).(2.10)

Substitute above value in equation (2.7), we get:

S(X,Y ) = (λ+
k(σ − p)

2
)g(X,Y ) + k(σ + p)η(X)η(Y )(2.11)

for any X,Y ∈ χ(M4).

Example 2.1. A radiation fluid has constant scalar curvature equal to 4λ.

3. Solitons of Kählerian Norden space-time manifold

Now replacing X and Y by JX and JY , respectively, in (2.11) and using
equations (2.2) and (2.3) we get

−S(X,Y ) = −(λ+
k(σ − p)

2
)g(X,Y ) + k(σ + p)η(JX)η(JY ).(3.1)

Adding (3.1) from (2.11), we have

k(σ + p)[η(JX)η(JY ) + η(X)η(Y )].

Put Y = ξ in above equation we obtained

k(σ + p)η(x) = 0.

Since k 6= 0 and η(X) 6= 0, we have

σ = −p.
Now using this in (3.1) we get

S(X,Y ) = (λ+ σk)g(X,Y ).(3.2)

From (3.2) and (1.3) we get

(λ+σk) g(X,Y )=−ag(X,Y )−bη(X)η(Y )− 1

2
[g(∇Xξ, Y )+g(X,∇Y ξ)].(3.3)
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Multiplying (3.3) by εii and summing over i for X = Y := Ei and then using
equations (2.8) and (2.9), we get:

4a− b = −4(λ+ σk)− divξ.(3.4)

Writing X = Y = ξ in (3.3), we obtain:

a− b = −(λ+ σk).(3.5)

Solving (3.4) and (3.5) we have

a = −(λ+ σk)− divξ

3
and b =

−divξ
3

.

If b = 0, then we obtain the Ricci soliton with a = −(λ+ σk) which is steady
if σ = −λk , expanding if σ < −λk and shrinking if σ > −λk .

Theorem 3.1. Let (g, ξ, a, b) be an η-Ricci soliton in a Kählerian Norden
space-time manifold with p = −σ and b = 0. Then it is steady if σ = −λk ,
expanding if σ < −λk and shrinking if σ > −λk .

From (3.2) and (1.5) we get

(λ+ σk) g(Y, Z) = −(a− r

2
)g(Y,Z)− bη(Y )η(Z)− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)],

then we write the above equation

[(λ+ σk)+(a− r

2
)]g(Y, Z)+bη(Y )η(Z)+

1

2
[g(∇Y ξ, Z)+g(Y,∇Zξ)]=0.(3.6)

Multiplying (3.6) by εii and contracting over Y and Z and then using equations
(2.8), (2.10) and (2.9), we get:

4a− b = 4λ+ 4kσ − divξ.(3.7)

Writing Y = Z = ξ in (3.6) and using (2.10) we obtain:

a− b = λ+ kσ,(3.8)

solving (3.7) and (3.8) we get

a = λ+ kσ − divξ

3
and b = −divξ

3
.

If b = 0, then we obtain Einstein soliton with a = λ + kσ which is steady if
σ = −λk , expanding if σ > −λk and shrinking if σ < −λk .

Theorem 3.2. Let (g, ξ, a, b) be an η-Einstein soliton in a Kählerian Norden
space-time manifold with p = −σ and b = 0. Then it is steady if σ = −λk ,
expanding if σ > −λk and shrinking if σ < −λk .

From (3.2) and (1.7) we get

(λ+ kσ) g(Y, Z) = − [a− 1

2
(φ+

1

2
)]g(Y,Z)− bη(Y )η(Z)

− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)],
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then we write the above equation

[(λ+ kσ) + (a− 1

2
(φ+

1

2
))]g(Y, Z) + bη(Y )η(Z)

+
1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)] = 0.(3.9)

Multiplying (3.9) by εii and contracting over Y and Z and then using equations
(2.8) and (2.9), we get:

4a− b = −4(λ+ kσ) + 2φ+ 1− divξ.(3.10)

Writing Y = Z = ξ in (3.9) then we obtain:

a− b = −(λ+ kσ) +
1

2
(φ+

1

2
),(3.11)

solving (3.10) and (3.11) we get

a = −(λ+ kσ) +
1

2
φ+

1

4
− divξ

3
and b = −divξ

3
.

If b = 0, then we obtain an Einstein soliton with a = −(λ+kσ)+ 1
2φ+ 1

4 which

is steady if σ = −λk + φ
2k + 1

4k , expanding if σ > −λk + φ
2k + 1

4k and shrinking

if σ < −λk + φ
2k + 1

4k .

Theorem 3.3. Let (g, ξ, a, b) be an η-Einstein soliton in a Kählerian Norden
space-time manifold with p = −σ and b = 0. Then it is steady if σ = −λk +
φ
2k + 1

4k , expanding if σ > −λk + φ
2k + 1

4k and shrinking if σ < −λk + φ
2k + 1

4k .

4. Almost pseudo Bochner symmetric Kählerian Norden
space-time manifold

In this section we study solitons of an almost pseudo symmetric Bochner
curvature tensor in a Kählerian Norden space-time manifold. Using (2.1), (2.2),
and (2.3) in (2.5) we have

(4.1) D(JY, JZ,U, V ) = −D(Y,Z, U, V ).

Taking the covariant derivative of (4.1), we get

(4.2) (∇XD)(JY, JZ,U, V ) = −(∇XD)(Y,Z, U, V ).

Using (2.4) in (4.2), we get

−A(Y )D(X,Z,U, V )−D(Z)R(Y,X,U, V ) = A(JY )D(X, JZ,U, V )

A(JZ)D(JY,X,U, V ).(4.3)

Setting Z = U = Ei in (4.3) then we have

−A(Y )K(X,V ) +A(D(Y,X)V ) = A(JY )K(JX, V )−A(D(JY,X)JV ).

Again putting Y = ρ = Ei in the above equation we get

K(X,V ) = 0.(4.4)
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Using equation (4.4) in (2.6) we obtain

S(Y,Z) =
r

10
g(Y,Z) +

r∗

4
g(JY, Z).(4.5)

From (4.5) and (1.3) we get

r

10
g(Y,Z) +

r∗

4
g(JY, Z) = − ag(Y,Z)− bη(Y )η(Z)

− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)].(4.6)

Multiplying (4.6) by εii and summing over i for Y = Z := Ei then using
equations (2.8), (2.10) and (2.9), we get:

4a− b =
−2[4λ+ k(σ − 3p)]

5
− divξ.(4.7)

Put X = Y = ξ in (4.6) then we obtain:

a− b =
−[4λ+ k(σ − 3p)]

10
.(4.8)

Solving (4.7) and (4.8) we get

a =
−[4λ+ k(σ − 3p)]

10
− divξ

3
and b =

−divξ
3

.

If b = 0, then we obtain Ricci soliton a = −[4λ+k(σ−3p)]
10 which is steady if

p = 4
3 (λk ) + σ

3 , expanding if p > 4
3 (λk ) + σ

3 and shrinking if p < 4
3 (λk ) + σ

3 .

Theorem 4.1. Let (g, ξ, a, b) be an η-Ricci soliton in an almost pseudo Bochner
symmetric Kählerian Norden space-time manifold with b = 0. Then it is steady
if p = 4

3 (λk ) + σ
3 , expanding if p > 4

3 (λk ) + σ
3 and shrinking if p < 4

3 (λk ) + σ
3 .

Remark 4.2. For radiation fluid σ = 3p we have a = − 2λ
5 −

divξ
3 and b = −divξ3 .

From (4.5) and (1.5) we get

r

10
g(Y,Z) +

r∗

4
g(JY, Z) = − (a− r

2
)g(Y, Z)− bη(Y )η(Z)

− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)].(4.9)

Multiplying (4.9) by εii and contracting over Y and Z then using equations
(2.8), (2.10) and (2.9), we get:

4a− b =
8[4λ+ k(σ − 3p)]

5
− divξ.(4.10)

Setting Y = Z = ξ in (4.9) and using (2.10) we obtain:

a− b =
2[4λ+ k(σ − 3p)]

5
,(4.11)
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solving (4.10) and (4.11) we get

a =
2[4λ+ k(σ − 3p)]

5
− divξ

3
and b = −divξ

3
.

If b = 0, then we obtain a Einstein soliton with a = 2[4λ+k(σ−3p)]
5 which is steady

if p = 4
k (λ3 ) + σ

3 , expanding if p > 4
k (λ3 ) + σ

3 and shrinking if p < 4
k (λ3 ) + σ

3 .

Theorem 4.3. Let (g, ξ, a, b) be an η-einstein soliton in an almost pseudo
Bochner symmetric Kählerian Norden space-time manifold with b = 0. Then
it is steady if p = 4

3 (λk ) + σ
3 , expanding if p > 4

3 (λk ) + σ
3 and shrinking if

p < 4
3 (λk ) + σ

3 .

Remark 4.4. For radiation fluid σ = 3p we have a = 8λ
5 −

divξ
3 and b = −divξ3 .

From (4.5) and (1.7) we get

r

10
g(Y,Z) +

r∗

4
g(JY, Z) = − (a− r

2
)g(Y, Z)− bη(Y )η(Z)

− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)].(4.12)

Multiplying (4.12) by εii and contracting over Y and Z then using equations
(2.8), (2.10) and (2.9), we get:

4a− b =
−[4λ+ k(σ − 3p)]

5
+ 2φ+ 1− divξ.(4.13)

Setting Y = Z = ξ in (4.12) and using (2.10) we obtain:

a− b =
−[4λ+ k(σ − 3p)]

10
+
φ

2
+

1

4
,(4.14)

solving (4.13) and (4.14) we get

a =
−[4λ+ k(σ − 3p)]

10
+
φ

2
+

1

4
− divξ

3
and b = −divξ

3
.

If b = 0, then we obtain a conformal Ricci soliton with a = −[4λ+k(σ−3p)]
10 + φ

2 + 1
4

which is steady if p = 4
k (λ3 ) + σ

3 −
5φ
3 −

5
6 , expanding if p > 4

k (λ3 ) + σ
3 −

5φ
3 −

5
6

and shrinking if p < 4
k (λ3 ) + σ

3 −
5φ
3 −

5
6 .

Theorem 4.5. Let (g, ξ, a, b) be an conformal η-Ricci soliton in an almost
pseudo Bochner symmetric Kählerian Norden space-time manifold with b = 0.

Then it is steady if p = −[4λ+k(σ−3p)]
10 + φ

2 + 1
4 , expanding if p > −[4λ+k(σ−3p)]

10 +
φ
2 + 1

4 and shrinking if p < −[4λ+k(σ−3p)]
10 + φ

2 + 1
4 .

Remark 4.6. For radiation fluid σ = 3p we have a = −2λ
5 + φ

2 + 1
4 −

divξ
3 and

b = −divξ3 .
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5. Conclusion

It is proved in the theorems of Section 3 solitons of Kählerian Norden space-
time manifolds depend on energy density σ, cosmological constant λ and gravi-
tational constant k because energy density is expressed as a linear combination
of cosmological constant and gravitational constant. Since a content matter of
the fluid is not the pure and perfect fluid is dust which looks isotropic or stars
in its rest frame. In modern cosmology, it is considered as a candidate for dark
energy, the cause of the acceleration of the expansion of the universe. We also
proved in the theorems of Section 4 that solitons of almost pseudo-Bochner
symmetric Kählerian Norden space-time manifolds depend on isotropic pres-
sure p, cosmological constant λ, energy density σ and gravitational constant k
because isotropic pressure is expressed as a linear combination of cosmological
constant, energy density and gravitational constant. Since the content matter
of the fluid is viscous and perfect hence it is known as a viscous fluid and is
further distinguished as Newtonian fluids if the viscosity of the fluid is constant
for a different rate of shear stress concerning time. The matter content of the
universe is assumed to perform like a perfect fluid in standard cosmological
models. It is concluded that the evolution of the universe depends on Ricci,
Einstein, and conformal Ricci solitons.
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