Acknowledgement
The author is grateful to the Central Department of Chemistry, Institute of Science and Technology (IOST), Tribhuvan University, Kirtipur, Nepal; Department of Chemistry, Patan Multiple Campus, Tribhuvan University, Patan Dhoka, Lalitpur, 44613, Nepal. Global Research Laboratory (GRL); Sun Moon University, South Korea; Advanced Functional Material Physics (AMP) laboratory, Suranaree University of Technology (SUT), Thailand for their support in conducting this research.
References
- Aadil, M., Zulfiqar, S., Warsi, M.F., Agboola, P.O., Shakir, I. 2020. Free-standing urchin-like nanoarchitectures of Co3O4 for advanced energy storage applications. Journal of Materials Research and Technology 9(6): 12697-12706. https://doi.org/10.1016/j.jmrt.2020.08.110
- Almendros, A.I., Martin-Lara, M.A., Ronda, A., Perez, A., Blazquez, G., Calero, M. 2015. Physico-chemical characterization of pine cone shell and its use as biosorbent and fuel. Bioresource Technology 196: 406-412. https://doi.org/10.1016/j.biortech.2015.07.109
- Arun, T., Prabakaran, K., Udayabhaskar, R., Mangalaraja, R.V., Akbari-Fakhrabadi, A. 2019. Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Applied Surface Science 485: 147-157. https://doi.org/10.1016/j.apsusc.2019.04.177
- Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of American the Chemical Society 60: 309-319. https://doi.org/10.1021/ja01269a023
- Chakraborty, S., Amal Raj, M., Mary, N.L. 2020. Biocompatible supercapacitor electrodes using green synthesised ZnO/polymer nanocomposites for efficient energy storage applications. Journal of Energy Storage 28: 101275. https://doi.org/10.1016/j.est.2020.101275
- Chen, J., Xu, J., Zhou, S., Zhao, N., Wong, C.P. 2016. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 21: 145-153. https://doi.org/10.1016/j.nanoen.2015.12.029
- Chen, S., Qiu, L., Cheng, H.M. 2020. Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews 120: 2811-2878. https://doi.org/10.1021/acs.chemrev.9b00466
- Collins, J., Zheng, D., Ngo, T., Qu, D., Foster, M. 2014. Partial graphitization of activated carbon by surface acidification. Carbon 79: 500-517. https://doi.org/10.1016/j.carbon.2014.08.009
- Ding, S., Li, X., Jiang, X., Hu, Q., Yan, Y., Zheng, Q., Lin, D. 2020. Core-shell nanostructured ZnO@CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochimica Acta 354: 136711. https://doi.org/10.1016/j.electacta.2020.136711
- Duan, H., Wang, T., Wu, X., Su, Z., Zhuang, J., Liu, S., Zhu, R., Chen, C., Pang, H. 2020. CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. Chinese Chemical Letters 31(9): 2330-2332. https://doi.org/10.1016/j.cclet.2020.06.001
- Fan, L.T., Lee, Y.H., Gharpuray, M.M. 1982. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering 23: 157-187.
- Fengel, D., Wegener, G. 1983. Wood: Chemistry, Ultra-structure, Reactions. Walter de Gruyter, Berlin, Germany.
- Galih, N.M., Yang, S.M., Yu, S.M., Kang, S.G. 2020. Study on the mechanical properties of tropical hybrid cross laminated timber using bamboo laminated board as core layer. Journal of the Korean Wood Science and Technology 48(2): 245-252. https://doi.org/10.5658/WOOD.2020.48.2.245
- Gao, B., Li, Y., Tian, Y., Gai, L. 2017. Acidified activated carbon with enhanced electrochemical performance for supercapacitors. International Journal of Electrochemical Science 12: 116-127. https://doi.org/10.20964/2017.01.61
- Gao, S., Zhu, L., Liu, L., Gao, A., Liao, F., Shao, M. 2016. Improved energy storage performance based on gamma-ray irradiated activated carbon cloth. Electrochimica Acta 191: 908-915. https://doi.org/10.1016/j.electacta.2016.01.151
- Guo, C.X., Yilmaz, G., Chen, S., Chen, S., Lu, X. 2015. Hierarchical nanocomposite composed of layered V2O5/PEDOT/MnO2 nanosheets for high-performance asymmetric supercapacitors. Nano Energy 12: 76-87. https://doi.org/10.1016/j.nanoen.2014.12.018
- Hwang, J.W., Oh, S.W. 2020. Mechanical performances of boards made from carbonized rice husk and sawdust: The effect of resin and sawdust addition ratio. Journal of the Korean Wood Science and Technology 48(5): 696-709. https://doi.org/10.5658/WOOD.2020.48.5.696
- Hwang, J.W., Park, H.J., Oh, S.W. 2021a. Effect of resin impregnation ratio on the properties of ceramics made from Miscanthus sinensis var. purpurascens particle boards. Journal of the Korean Wood Science and Technology 49(4): 360-370. https://doi.org/10.5658/WOOD.2021.49.4.360
- Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021b. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225. https://doi.org/10.5658/WOOD.2021.49.3.213
- Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of Raru species originating from central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429. https://doi.org/10.5658/WOOD.2021.49.5.416
- Ju, Y.M., Jeong, H., Chea, K.S., Ahn, B.J., Lee, S.M. 2020. Evaluation of the amount of gas generated through combustion of wood charcoal and agglomerated charcoal depending on air ventilation. Journal of the Korean Wood Science and Technology 48(6): 847-860. https://doi.org/10.5658/WOOD.2020.48.6.847
- Kim, G.C., Kim, J.H. 2020. Changes in mechanical properties of wood due to 1 year outdoor exposure. Journal of the Korean Wood Science and Technology 48(1): 12-21. https://doi.org/10.5658/WOOD.2020.48.1.12
- Kim, K.H., Kim, J.Y., Kim, C.S., Choi, J.W. 2019. Pyrolysis of lignin obtained from cinnamyl alcohol dehydrogenase (CAD) downregulated Arabidopsis thaliana. Journal of the Korean Wood Science and Technology 47(4): 442-450. https://doi.org/10.5658/WOOD.2019.47.4.442
- Kondrat, S., Perez, C.R., Presser, V., Gogotsi, Y., Kornyshev, A.A. 2012. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy & Environmental Science 5(4): 6474-6479. https://doi.org/10.1039/c2ee03092f
- Krishnamoorthy, K., Pazhamalai, P., Mariappan, V.K., Nardekar, S.S., Sahoo, S., Kim, S.J. 2020. Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nature Communications 11: 2351. https://doi.org/10.1038/s41467-020-15808-6
- Lee, H., Kim, S., Park, M.J. 2021. Specific surface area characteristic analysis of porous carbon prepared from lignin-polyacrylonitrile copolymer by activation conditions. Journal of the Korean Wood Science and Technology 49(4): 299-314. https://doi.org/10.5658/WOOD.2021.49.4.299
- Lee, H.Y., Goodenough, J.B. 1999. Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry 144(1): 220-223. https://doi.org/10.1006/jssc.1998.8128
- Li, J., Chen, D., Wu, Q. 2019. α-Fe2O3 based carbon composite as pure negative electrode for application as supercapacitor. European Journal of Inorganic Chemistry 2019(10): 1301-1312. https://doi.org/10.1002/ejic.201900015
- Li, M., Yu, J., Wang, X., Yang, Z. 2020. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Applied Surface Science 530: 147230. https://doi.org/10.1016/j.apsusc.2020.147230
- Liu, J., Wang, J., Xu, C., Jiang, H., Li, C., Zhang, L., Lin, J., Xiang Shen, Z.X. 2017. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Advanced Science 5(1): 1700322. https://doi.org/10.1002/advs.201700322
- Liu, L., Niu, Z., Chen, J. 2016. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews 45(15): 4340-4363. https://doi.org/10.1039/c6cs00041j
- Maile, N.C., Shinde, S.K., Patil, R.T., Fulari, A.V., Koli, R.R., Kim, D.Y., Lee, D.S., Fulari, V.J. 2019. Structural and morphological changes in binder-free MnCo2O4 electrodes for supercapacitor applications: Effect of deposition parameters. Journal of Materials Science: Materials in Electronics 30: 3729-3743. https://doi.org/10.1007/s10854-018-00655-5
- Mohamed, I.M.A., Yasin, A.S., Liu, C. 2020. Synthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceramics International 46(3): 3912-3920. https://doi.org/10.1016/j.ceramint.2019.10.119
- Molina-Sabio, M., RodRiguez-Reinoso, F., Caturla, F., Selles, M.J. 1995. Porosity in granular carbons activated with phosphoric acid. Carbon 33(8): 1105-1113. https://doi.org/10.1016/0008-6223(95)00059-M
- Mondal, S., Rana, U., Malik, S. 2017. Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. The Journal of Physical Chemistry C 121(14): 7573-7583. https://doi.org/10.1021/acs.jpcc.6b10978
- Ozcan, C., Korkmaz, M. 2019. Determination of relationship between thermal and mechanical properties of wood material. Journal of the Korean Wood Science and Technology 47(4): 408-417. https://doi.org/10.5658/WOOD.2019.47.4.408
- Pankaj, A., Tewari, K., Singh, S., Singh, S.P. 2018. Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemistry & Engineering 6(4): 5561-5569. https://doi.org/10.1016/j.jece.2018.08.059
- Sarkar, A., Singh, A.K., Sarkar, D., Khan, G.G., Mandal, K. 2015. Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustainable Chemistry & Engineering 3(9): 2254-2263. https://doi.org/10.1021/acssuschemeng.5b00519
- Schulz, H.R., Acosta, A.P., Barbosa, K.T., da Silva Junior, M.A.P., Gallio, E., de Avila Delucis, R., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233. https://doi.org/10.5658/WOOD.2021.49.3.226
- Shen, H., Kong, X., Zhang, P., Song, X., Wang, H., Zhang, Y. 2021. In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor. Journal of Alloys and Compounds 853: 157357. https://doi.org/10.1016/j.jallcom.2020.157357
- Shrestha, D. 2021. Efficiency of wood-dust of Dalbergia sisoo as low-cost adsorbent for rhodamine-B dye removal. Nanomaterials 11: 2217. https://doi.org/10.3390/nano11092217
- Shrestha, D., Maensiri, S., Wongpratat, U., Lee, S.W., Rajbhandari Nyachhyon, A. 2019. Shorea robustaderived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. Journal of Environmental Chemistry & Engineering 7(5): 103227. https://doi.org/10.1016/j.jece.2019.103227
- Shrestha, D., Rajbhandari, A. 2021. The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood-dust of Shorea robusta. Heliyon 7(9): E07917. https://doi.org/10.1016/j.heliyon.2021.e07917
- Sun, N., Zhou, D., Liu, W., Shi, S., Tian, Z., Liu, F., Li, S., Wang, J., Ali, F. 2020. Tailoring surface chemistry and morphology of titanium nitride electrode for on-chip supercapacitors. ACS Sustainable Chemistry & Engineering 8(21): 7869-7878. https://doi.org/10.1021/acssuschemeng.0c00977
- Wang, C., Li, H., Zhao, J., Zhu, Y., Yuan, W.Z., Zhang, Y. 2013. Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts. International Journal of Hydrogen Energy 38(30): 13230-13237. https://doi.org/10.1016/j.ijhydene.2013.07.111
- Wang, K., Yan, R., Tian, X., Wang, Y., Lei, S., Li, X., Yang, T., Wang, X., Song, Y., Liu, Y., Liu, Z., Guo, Q. 2019. Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochimica Acta 302: 78-91. https://doi.org/10.1016/j.electacta.2019.02.015
- Wei, J., Geng, S., Pitkanen, O., Jarvinen, T., Kordas, K., Oksman, K. 2020. Green carbon nanofiber networks for advanced energy storage. ACS Applied Energy Materials 3(4): 3530-3540. https://doi.org/10.1021/acsaem.0c00065
- Wong, S.I., Lin, H., Sunarso, J., Wong, B.T., Jia, B. 2020. Optimization of ionic-liquid based electrolyte concentration for high-energy density grapheme supercapacitors. Applied Materials Today 18: 100522. https://doi.org/10.1016/j.apmt.2019.100522
- Xie, K., Zhang, M., Yang, Y., Zhao, L., Qi, W. 2018. Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Research Letters 13: 163. https://doi.org/10.1186/s11671-018-2577-3
- Xuan, H., Li, H., Yang, J., Liang, X., Xie, Z., Han, P., Wu, Y. 2020. Rational design of hierarchical coreshell structured CoMoO4@CoS composites on reduced graphene oxide for supercapacitors with enhanced electrochemical performance. International Journal of Hydrogen Energy 45(11): 6024-6035. https://doi.org/10.1016/j.ijhydene.2019.12.178
- Yang, C., Shi, M., Nuli, Y., Song, X., Zhao, L., Liu, J., Zhang, P., Gao, L. 2020. Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors. Electrochimica Acta 331: 135386. https://doi.org/10.1016/j.electacta.2019.135386
- Yun, T.G., Park, M., Kim, D.H., Kim, D., Cheong, J.Y., Bae, J.G., Han, S.M., Kim, I.D. 2019. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3): 3141-3150. https://doi.org/10.1021/acsnano.8b08560
- Zequine, C., Ranaweera, C.K., Wang, Z., Dvornic, P.R., Kahol, P.K., Singh, S., Tripathi, P., Srivastava, O.N., Singh, S., Gupta, B.K., Gupta, G., Gupta, R.K. 2017. High-performance flexible supercapacitors obtained via recycled jute: Bio-waste to energy storage approach. Scientific Reports 7: 1174. https://doi.org/10.1038/s41598-017-01319-w
- Zhang, M., Li, X., Wang, X., Li, D., Zhao, N. 2020. Three-dimensional core-branch α-Fe2O3@NiO/carbon cloth heterostructured electrodes for flexible supercapacitors. Frontiers in Chemistry 7: 887. https://doi.org/10.3389/fchem.2019.00887
- Zhang, P., Zhang, Z., Chen, J., Dai, S. 2015. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation. Carbon 93: 39-47. https://doi.org/10.1016/j.carbon.2015.05.019
- Zhang, X., Fu, Q., Huang, H., Wei, L., Guo, X. 2019. Silver-quantum-dot-modified MoO3 and MnO2 paperlike freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13): e1805235.