DOI QR코드

DOI QR Code

KNOTS IN HOMOLOGY LENS SPACES DETERMINED BY THEIR COMPLEMENTS

  • Ichihara, Kazuhiro (Department of Mathematics College of Humanities and Sciences Nihon University) ;
  • Saito, Toshio (Department of Mathematics Joetsu University of Education)
  • Received : 2021.07.08
  • Accepted : 2021.11.05
  • Published : 2022.07.31

Abstract

In this paper, we consider the knot complement problem for not null-homologous knots in homology lens spaces. Let M be a homology lens space with H1(M; ℤ) ≅ ℤp and K a not null-homologous knot in M. We show that, K is determined by its complement if M is non-hyperbolic, K is hyperbolic, and p is a prime greater than 7, or, if M is actually a lens space L(p, q) and K represents a generator of H1(L(p, q)).

Keywords

Acknowledgement

The authors would like to thank Tetsuya Ito for useful discussions, and also thank to the anonymous referee for reading the paper carefully and providing thoughtful comments.

References

  1. S. A. Bleiler, C. D. Hodgson, and J. R. Weeks, Cosmetic surgery on knots, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), 23-34, Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999. https://doi.org/10.2140/gtm.1999.2.23
  2. S. Boyer and X. Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996), no. 4, 1005-1050. https://doi.org/10.1090/S0894-0347-96-00201-9
  3. A. Christensen, Homology of manifolds obtained by Dehn surgery on knots in lens spaces, J. Knot Theory Ramifications 9 (2000), no. 4, 431-442. https://doi.org/10.1142/S0218216500000219
  4. M. Culler, C. M. Gordon, J. Luecke, and P. B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237-300. https://doi.org/10.2307/1971311
  5. F. Gainullin, Heegaard Floer homology and knots determined by their complements, Algebr. Geom. Topol. 18 (2018), no. 1, 69-109. https://doi.org/10.2140/agt.2018.18.69
  6. C. McA. Gordon, Dehn surgery on knots, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 631-642, Math. Soc. Japan, Tokyo, 1991.
  7. C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), no. 2, 371-415. https://doi.org/10.2307/1990979
  8. C. R. Guilbault, Homology lens spaces and Dehn surgery on homology spheres, Fund. Math. 144 (1994), no. 3, 287-292. https://doi.org/10.4064/fm-144-3-287-292
  9. K. Ichihara and I. D. Jong, Cosmetic banding on knots and links, Osaka J. Math. 55 (2018), no. 4, 731-745. https://projecteuclid.org/euclid.ojm/1539158668
  10. T. Ito, Applications of the Casson-Walker invariant to the knot complement and the cosmetic crossing conjectures, preprint, arXiv:2103.15277.
  11. R. Kirby, Problems in low-dimensional topology, in Geometric topology (Athens, GA, 1993), 35-473, AMS/IP Stud. Adv. Math., 2.2, Amer. Math. Soc., Providence, RI, 1997.
  12. M. Lackenby and R. Meyerhoff, The maximal number of exceptional Dehn surgeries, Invent. Math. 191 (2013), no. 2, 341-382. https://doi.org/10.1007/s00222-012-0395-2
  13. E. Luft and D. Sjerve, Degree-1 maps into lens spaces and free cyclic actions on homology 3-spheres, Topology Appl. 37 (1990), no. 2, 131-136. https://doi.org/10.1016/0166-8641(90)90057-9
  14. Y. Mathieu, Sur les noeuds qui ne sont pas determines par leur complement et problemes de chirurgie dans les varietes de dimension 3, These, L'Universite de Provence, 1990.
  15. Y. Mathieu, Closed 3-manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications 1 (1992), no. 3, 279-296. https://doi.org/10.1142/S0218216592000161
  16. D. Matignon, On the knot complement problem for non-hyperbolic knots, Topology Appl. 157 (2010), no. 12, 1900-1925. https://doi.org/10.1016/j.topol.2010.03.009
  17. P. Ozsvath and Z. Szabo, Lectures on Heegaard Floer homology, in Floer homology, gauge theory, and low-dimensional topology, 29-70, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006.
  18. Y. W. Rong, Some knots not determined by their complements, in Quantum topology, 339-353, Ser. Knots Everything, 3, World Sci. Publ., River Edge, NJ, 1993. https://doi.org/10.1142/9789812796387_0019
  19. H. Tietze, Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. Math. Phys. 19 (1908), no. 1, 1-118. https://doi.org/10.1007/BF01736688