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THE KÄHLER DIFFERENT OF A SET OF POINTS
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Abstract. Given an ACM set X of points in a multiprojective space
Pm×Pn over a field of characteristic zero, we are interested in studying the

Kähler different and the Cayley-Bacharach property for X. In P1×P1, the

Cayley-Bacharach property agrees with the complete intersection prop-
erty and it is characterized by using the Kähler different. However, this

result fails to hold in Pm× Pn for n > 1 or m > 1. In this paper we start

an investigation of the Kähler different and its Hilbert function and then
prove that X is a complete intersection of type (d1, . . . , dm, d′1, . . . , d

′
n) if

and only if it has the Cayley-Bacharach property and the Kähler differ-

ent is non-zero at a certain degree. We characterize the Cayley-Bacharach
property of X under certain assumptions.

1. Introduction

Let X be a finite set of points in the multiprojective space Pm× Pn over
a field K of characteristic zero, let IX ⊆ S := K[X0, . . . , Xm, Y0, . . . , Yn] be
the bihomogeneous vanishing ideal of X, and let RX = S/IX be the bigraded
coordinate ring of X. The set X is called arithmetically Cohen-Macaulay (ACM)
if RX is a Cohen-Macaulay ring, and X is called a complete intersection of type
(d1, . . . , dm, d

′
1, . . . , d

′
n) if IX is generated by a bihomogeneous regular sequence

{F1, . . . , Fm, G1, . . . , Gn} with deg(Fi) = (di, 0) for i = 1, . . . ,m and deg(Gj) =
(0, d′j) for j = 1, . . . , n. The study of special classes of finite sets of points such
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as ACM sets of points, complete intersections, etc. in a multiprojective space
is a very active field of research and has been attracted by many authors. For
instance, the work on finding a classification of ACM set of points includes
[3, 7–9,18,23] and the work on complete intersections includes [2, 5, 6, 12].

Obviously, every complete intersection of type (d1, . . . , dm, d
′
1, . . . , d

′
n) is

ACM. It is a subject of research to understand when X is a complete intersec-
tion of type (d1, . . . , dm, d

′
1, . . . , d

′
n). One of the classical tools for studying the

complete intersection property is the Kähler different (see [12, 16, 19]). When
X is ACM, we may assume that Ro := K[X0, Y0] is a Noetherian normaliza-
tion of RX and define the Kähler different ϑX of X or of the bigraded algebra
RX/Ro which is known as the initial Fitting ideal of the Kähler differential
module of RX/Ro. In the case m = n = 1, [5, Proposition 7.3] shows that an
ACM set X is a complete intersection of type (d1, d

′
1) if and only if ϑX con-

tains no separators for X of degree less than (2rX1 , 2rX2), where Xi = πi(X)
and rXi is the regularity index of the Hilbert function of Xi for i = 1, 2 and
π1 : Pm× Pn → Pm and π2 : Pm× Pn → Pn are the canonical projections,
which in turn is equivalent to the condition that X has the Cayley-Bacharach
property. Here, we say that X has the Cayley-Bacharach property if the Hilbert
function of X \ {p} is independent of the choice of p ∈ X. A nice history about
the study of the Cayley-Bacharach property of a finite set of points in the pro-
jective space can be found in [13]. Notice that the above result of [5] does not
hold true in general, for instance when m > 1 or n > 1 as Example 4.6 shows.
But if X ⊆ Pm× Pn is a complete intersection of type (d1, . . . , dm, d

′
1, . . . , d

′
n),

then it still has the Cayley-Bacharach property and ϑX contains no separators
for X of degree less than (2rX1 , 2rX2). It is natural to ask which additional con-
ditions make an ACM set of points X with Cayley-Bacharach property being a
complete intersection of type (d1, . . . , dm, d

′
1, . . . , d

′
n).

Working on this question, in this paper we prove the following result.

Theorem 1.1 (Theorem 4.7). For a set X of s distinct points in Pm×Pn, the
following are equivalent.

(a) X = CI(d1, . . . , dm, d
′
1, . . . , d

′
n) for some positive integers di, d

′
j ≥ 1.

(b) X = X1×X2 has the Cayley-Bacharach property and HFϑX(rX1
, rX2

) 6=
0.

Also, when X satisfies the (?)-property (see [11, Definition 3.19]), we look
closely at the Cayley-Bacharach property for X. If we write X1 = π1(X) =
{q1, . . . , qs1} ⊆ Pm and X2 = π2(X) = {q′1, . . . , q′s2} ⊆ P

n and put

Wi := π2(π−1
1 (qi) ∩ X) ⊆ X2, Vj := π1(π−1

2 (q′j) ∩ X) ⊆ X1

for i = 1, . . . , s1 and j = 1, . . . , s2, then we obtain the following characterization
of the Cayley-Bacharach property for X.

Theorem 1.2 (Theorem 5.2). Suppose that X ⊆ Pm×Pn has the (?)-property.
Then X has the Cayley-Bacharach property if and only if the following condi-
tions are satisfied:
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(a) V1, . . . , Vs2 are Cayley-Bacharach schemes in Pm and rV1
= · · · = rVs2

;

(b) W1, . . . ,Ws1 are Cayley-Bacharach schemes in Pn and rW1 = · · · =
rWs1

.

Using Theorem 1.2, in P1 × Pn we can drop the condition X = X1 × X2 in
part (b) of Theorem 1.1 and get the following consequence.

Theorem 1.3 (Corollary 5.6). Suppose that X ⊆ P1×Pn has the (?)-property.
Then X = CI(d1, d

′
1, . . . , d

′
n) for some positive integers d1, d

′
1, . . . , d

′
n ≥ 1 if and

only if X has the Cayley-Bacharach property and HFϑX(d1 − 1, rX2
) 6= 0.

The paper is organized as follows. In Section 2 we fix the notation and
recall the definitions of the border of the Hilbert function of X and the Kähler
differential modules Ω1

RX/K
and Ω1

RX/Ro
. In particular, we use a presentation

of Ω1
RX/K

(see Theorem 2.5) and its relation with Ω1
RX/Ro

to give a formula

for the Hilbert function of Ω1
RX/Ro

when X is ACM (see Proposition 2.7). In

Section 3 we take a closed look at the Kähler different ϑX of an ACM set of
points X in Pm×Pn. We provide several basic properties of the Hilbert function
of ϑX and its border. Section 4 contains the first main result (Theorem 4.7)
which characterize X = CI(d1, . . . , dm, d

′
1, . . . , d

′
n) using the Kähler different

and the Cayley-Bacharach property. In this special case we describe explicitly
the Hilbert function of ϑX and its border (see Proposition 4.3 and Corollary 4.4).
In the final section, we restrict our attention to the finite sets of points in
Pm×Pn having the (?)-property. In this setting, we relate the degree of a point
qi×q′j ∈ X to degrees of points in Wi and Vj (see Proposition 5.1). This enables
us to prove a characterization of the Cayley-Bacharach property of X (see
Theorem 5.2) and derive some consequences in P1×Pn (see Proposition 5.5 and
Corollary 5.6). All examples in this paper were calculated using the computer
algebra system ApCoCoA [21].

2. The Kähler differential modules

Let K be a field of characteristic zero, let m,n ≥ 1 be positive integers.
For (i1, j1), (i2, j2) ∈ Z2, we write (i1, j1) � (i2, j2) if i1 ≤ i2 and j1 ≤
j2. The bigraded coordinate ring of Pm× Pn is the polynomial ring S =
K[X0, . . . , Xm, Y0, . . . , Yn] equipped with the Z2-grading defined by deg(X0) =
· · · = deg(Xm) = (1, 0) and deg(Y0) = · · · = deg(Yn) = (0, 1). For (i, j) ∈ Z2,
we let Si,j be the bihomogeneous component of degree (i, j) of S, i.e., the
K-vector space with basis

{Xα0
0 · · ·Xαm

m · Y β0

0 · · ·Y βn
n |

∑m
k=0αk = i,

∑n
k=0βk = j, αk, βk ∈ N }.

Given an ideal I ⊆ S, we set Ii,j := I ∩ Si,j for all (i, j) ∈ Z2. The ideal
I is called bihomogeneous if I =

⊕
(i,j)∈Z2 Ii,j . If I is a bihomogeneous ideal

of S, then the quotient ring S/I also inherits the structure of a bigraded ring
via (S/I)i,j := Si,j/Ii,j for all (i, j) ∈ Z2.
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A finitely generated S-module M is a bigraded S-module if it has a direct
sum decomposition

M =
⊕

(i,j)∈Z2

Mi,j

with the property that S(i1,j1)M(i2,j2) ⊆ Mi1+i2,j1+j2 for all (i1, j1), (i2, j2) ∈
Z2.

Definition. Let M be a finitely generated bigraded S-module. The Hilbert
function of M is the numerical function HFM : Z2 → N defined by

HFM (i, j) := dimKMi,j for all (i, j) ∈ Z2.

In particular, for a bihomogeneous ideal I of S, the Hilbert function of S/I
satisfies

HFS/I(i, j) := dimk(S/I)i,j = dimk Si,j − dimk Ii,j for all (i, j) ∈ Z2.

If M is a finitely generated bigraded S-module such that HFM (i, j) = 0 for
(i, j) � (0, 0), we write the Hilbert function of M as an infinite matrix, where
the initial row and column are indexed by 0.

A point in the space Pm× Pn has the form

p = [a0 : a1 : · · · : am]× [b0 : b1 : · · · : bn] ∈ Pm× Pn,

where [a0 : a1 : · · · : am] ∈ Pm and [b0 : b1 : · · · : bn] ∈ Pn. Its vanishing ideal is
the bihomogeneous prime ideal of the form

Ip = 〈`1, . . . , `m, `′1, . . . , `′n〉 ⊆ S,

where deg(`i) = (1, 0) and deg(`′j) = (0, 1) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition. Let s ≥ 1 and let X = {p1, . . . , ps} be a set of s distinct points
in Pm× Pn. The bihomogeneous vanishing ideal of X is given by IX = Ip1 ∩
· · · ∩ Ips and its bigraded coordinate ring is RX = S/IX.

In what follows, let X = {p1, . . . , ps} be a set of s distinct points in Pm×Pn,
and let xi and yj denote the images of Xi and Yj in RX for 0 ≤ i ≤ m and
0 ≤ j ≤ n. We write HFX for the Hilbert function of RX and call it the Hilbert
function of X. It is worth to noting here that a bihomogeneous element is a
zerodivisor of RX if and only if it vanishes at some points of X.

Convention 2.1. Given the canonical projections π1 : Pm× Pn → Pm and
π2 : Pm× Pn → Pn, we let X1 = π1(X), s1 = |X1|, X2 = π2(X), and s2 = |X2|.
The set X1 has its homogeneous vanishing ideal IX1

⊆ K[X0, . . . , Xm] and
its homogeneous coordinate ring RX1

= K[X0, . . . , Xm]/IX1
. Similarly, X2

has its homogeneous vanishing ideal IX2 ⊆ K[Y0, . . . , Yn] and its homogeneous
coordinate ring RX2 = K[Y0, . . . , Yn]/IX2 .

Notice that there exists a linear form ` ∈ K[X0, . . . , Xm] such that ` does not
vanish at any point of X1. Analogously, we find a linear form `′ ∈ K[Y0, . . . , Yn]
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which does not vanish at any point of X2. It follows that `, `
′ ∈ RX are non-

zerodivisors (see also e.g. [7, Lemma 1.2]). As a consequence of this fact and
[20, Proposition 1.9] and [22, Proposition 4.6], we get several basis properties
of the Hilbert function of X.

Proposition 2.2. Let (i, j) ∈ Z2 with (i, j) � (0, 0).

(a) We have HFX(i, j) ≤ min{HFX(i+ 1, j),HFX(i, j + 1)} ≤ s.
(b) If HFX(i, j) = HFX(i + 1, j), then HFX(i, j) = HFX(i + 2, j). Also,

HFX(i, j) = HFX(s1 − 1, j) for i ≥ s1 − 1 and j < s2 − 1.
(c) If HFX(i, j) = HFX(i, j + 1), then HFX(i, j) = HFX(i, j + 2). Also,

HFX(i, j) = HFX(i, s2 − 1) for i < s1 − 1 and j ≥ s2 − 1.
(d) We have HFX(i, j) = s for all (i, j) � (s1 − 1, s2 − 1).

For k, l ∈ N set νk := min{i ∈ N | HFX(i, k) = HFX(i + 1, k)} and %l :=
min{j ∈ N | HFX(l, j) = HFX(l, j + 1)}. Let ν := sup{νk | k ∈ N} and
% := sup{%l | l ∈ N}. In view of Proposition 2.2, we have (ν, %) � (s1−1, s2−1).
Especially, (ν, %) = (s1− 1, s2− 1) if m = n = 1. Moreover, the tuple (ν, %) can
be described by the following lemma.

Lemma 2.3. Let k, l ∈ N. If HFX(i, k) = HFX(i+ 1, k), then HFX(i, k + 1) =
HFX(i + 1, k + 1); and if HFX(l, j) = HFX(l, j + 1), then HFX(l + 1, j) =
HFX(l + 1, j + 1). In particular, we have (ν, %) = (rX1 , rX2), where rXk

is the
regularity index of HFXk

for k = 1, 2.

Proof. As in the argument before Proposition 2.2, we find ` ∈ S1,0 and `′ ∈ S0,1

such that their images ¯̀, ¯̀′ in RX are non-zerodivisors. Then we have

HFX(i, k + 1) = dimK((RX)i,k · (RX)0,1) = dimK(¯̀· (RX)i,k · (RX)0,1)

= dimK((RX)i+1,k · (RX)0,1) = HFX(i+ 1, k + 1),

where the second equality follows from the fact that ¯̀ ∈ (RX)1,0 is a non-
zerodivisor ofRX and the third equality induces by assumption that HFX(i, k) =
HFX(i+ 1, k). Analogously, by using the non-zerodivisor ¯̀′ ∈ (RX)0,1, we have
HFX(l + 1, j) = HFX(l + 1, j + 1) when HFX(l, j) = HFX(l, j + 1). Conse-
quently, we get νk ≥ νk+1 for all k ∈ N and %l ≥ %l+1 for all l ∈ N, and hence
ν = ν0 = rX1 and % = %0 = rX2 . �

The lemma leads us to the following definition, which agrees with [22, Defi-
nition 4.9] if (ν, %) = (s1 − 1, s2 − 1).

Definition. Let rX1
, rX2

be regularity indices of HFX1
and HFX2

, respectively.
The pair BX = (BC , BR), where

BC = (HFX(rX1
, 0),HFX(rX1

, 1), . . . ,HFX(rX1
, rX2

))

and

BR = (HFX(0, rX2),HFX(1, rX2), . . . ,HFX(rX1 , rX2)),

is called the border of the Hilbert function of X.
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Example 2.4. LetK = Q, let X = {p1, . . . , p9} be a set of nine points in P2×P2

given by p1 = q1 × q1, p2 = q1 × q2, p3 = q1 × q3, p4 = q1 × q4, p5 = q2 × q1,
p6 = q2× q2, p7 = q2× q3, p8 = q3× q1 and p9 = q3× q2, where q1 = (1 : 0 : 0),
q2 = (1 : 1 : 0), q3 = (1 : 0 : 1), q4 = (1 : 1 : 1) in P2. Then X1 = {q1, q2, q3},
s1 = 3, X2 = {q1, q2, q3, q4} and s2 = 4. The Hilbert function of X is given by

HFX =


1 3 4 4 · · ·
3 8 9 9 · · ·
3 8 9 9 · · ·
3 8 9 9 · · ·
...

...
...

...
. . .

 ,
and so rX1 = 1 and rX2 = 2. The border of the Hilbert function of X is given by
BX = ((3, 8, 9), (4, 9)). In this case we have rX1

< 2 = s1−1 or rX2
< 3 = s2−1,

and HFX(i, j) = s = 9 for all (i, j) � (rX1
, rX2

).

In the bigraded enveloping algebra RX ⊗K RX we have the bihomogeneous
ideal J = Ker(µ), where µ : RX ⊗K RX → RX is the bihomogeneous RX-linear
map given by µ(f ⊗g) = fg. The bigraded RX-module Ω1

RX/K
= J/J2 is called

the module of Kähler differentials of RX/K. The bihomogeneous K-linear map
dRX/K : RX → Ω1

RX/K
given by f 7→ f ⊗ 1 − 1 ⊗ f + J2 satisfies the universal

property. We call d the universal derivation of RX/K. More generally, for any
bigraded K-algebra T/R we can define in the same way the Kähler differential
module Ω1

T/R, and the universal derivation of T/R (cf. [16, Section 2]). Note

that

Ω1
S/K =

m⊕
i=0

SdXi ⊕
n⊕
j=0

SdYj ∼= Sm+1(−1, 0)⊕ Sn+1(0,−1)

and Ω1
RX/K

= 〈dxi, dyj | 0 ≤ i ≤ m, 0 ≤ j ≤ n〉RX . Especially, the Hilbert

function of Ω1
RX/K

can be computed by using the following theorem (see [6,

Theorem 3.5]).

Theorem 2.5. Let Y be the subscheme of Pm×Pn defined by the bihomogeneous
ideal IY = I2

p1 ∩ · · · ∩ I
2
ps . There is an exact sequence of bigraded RX-modules

0 −→ IX/IY −→ Rm+1
X (−1, 0)⊕Rn+1

X (0,−1) −→ Ω1
RX/K

−→ 0.

In particular, for (i, j) ∈ Z2, we have

HFΩ1
RX/K

(i, j)=(m+1) HFX(i−1, j)+(n+1) HFX(i, j−1)+HFX(i, j)−HFY(i, j).

Notice that RX has the Krull dimension 2, but 1 ≤ depth(RX) ≤ 2 (see
[23, Section 2]). In case depth(RX) attains the maximal value, we have the
following notion.

Definition. We say that X is arithmetically Cohen-Macaulay (ACM) if we
have depth(RX) = 2.
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When X is ACM, then there exist two linear forms ` ∈ S1,0, `′ ∈ S0,1 such

that ` and `
′

give rise to a regular sequence in RX (see [23, Proposition 3.2]).
After a change of coordinates, we can assume that ` = X0 and `′ = Y0, so that
x0, y0 form a regular sequence in RX. In this case we set Ro := K[x0, y0]. Then

RX = S/IX = Ro[x1, . . . , xm, y1, . . . , yn]

is a finitely generated, bigraded Ro-module, and the monomorphism Ro ↪→ RX
defines a Noetherian normalization.

Remark 2.6. The Euler derivation of RX/K is given by ε : RX → RX, f 7→
(i+j)f for f ∈ (RX)i,j (see [16, Section 1]). Set m := 〈x0, . . . , xm, y0, . . . , yn〉RX .
By the universal property of Ω1

RX/K
, this induces a bihomogeneous surjective

RX-linear map γ : Ω1
RX/K

→ m with γ(dxi) = xi and γ(dyj) = yj for all i, j. In

particular, AnnRX(dx0) = AnnRX(dy0) = 〈0〉, since x0, y0 are non-zerodivisors
of RX.

There are relations between Ω1
RX/K

and Ω1
RX/Ro

as follows.

Proposition 2.7. Let X be an ACM set of s distinct points in Pm×Pn. There
exists an exact sequence of bigraded RX-modules

0→ RXdx0 ⊕RXdy0 ↪→ Ω1
RX/K

ψ−→ Ω1
RX/Ro

→ 0,

where ψ(gdf) = gdRX/Ro
f for f, g ∈ RX. In particular, we have

HFΩ1
RX/Ro

(i, j) = mHFX(i− 1, j) + nHFX(i, j − 1) + HFX(i, j)−HFY(i, j)

for all (i, j) ∈ N2, where Y is the subscheme of Pm× Pn defined by IY =
I2
p1 ∩ · · · ∩ I

2
ps .

Proof. By [16, Proposition 3.24], we have an exact sequence of bigraded RX-
modules

RX ⊗Ro
Ω1
Ro/K

ϕ−→ Ω1
RX/K

ψ−→ Ω1
RX/Ro

→ 0,

where Ω1
Ro/K

∼= Rodx0⊕Rody0 and ϕ(f⊗ (f1dx0 +f2dy0)) = ff1dx0 +ff2dy0.

Hence the claimed exact sequence follows from Im(ϕ) = RXdx0 ⊕RXdy0. Fur-
thermore, the Hilbert function of Ω1

RX/Ro
satisfies

HFΩ1
RX/Ro

(i, j) = HFΩ1
RX/K

(i, j)−HFX(i− 1, j)−HFX(i, j − 1).

An application of Theorem 2.5 gives the desired formula for HFΩ1
RX/Ro

. �

3. The Kähler different

Let X = {p1, . . . , ps} ⊆ Pm× Pn be an ACM set of points, suppose that
{x0, y0} is a regular sequence in RX, and let Ro = K[x0, y0]. Further, let
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{F1, . . . , Fr}, r ≥ n + m, be a bihomogeneous system of generators of IX. By
[16, Corollary 2.14], Ω1

RX/Ro
has the following presentation

0→ K →
m⊕
i=1

RXdXi ⊕
n⊕
j=1

RXdYj → Ω1
RX/Ro

→ 0,

where the bigraded RX-module K is generated by the elements
∑m
i=1

∂Fk

∂xi
dXi+∑n

j=1
∂Fk

∂yj
dYj for k = 1, . . . , r. The Jacobian matrix

J :=


∂F1

∂x1
· · · ∂F1

∂xm

∂F1

∂y1
· · · ∂F1

∂yn
...

. . .
...

...
. . .

...
∂Fr

∂x1
· · · ∂Fr

∂xm

∂Fr

∂y1
· · · ∂Fr

∂yn


is a relation matrix of Ω1

RX/Ro
with respect to {dx1, . . . , dxm, dy1, . . . , dyn}. It

is easy to see that every m+n-minors of J is a bihomogeneous element of RX.

Definition. The bihomogeneous ideal of RX generated by all m+n-minors of
the Jacobian matrix J is called the Kähler different of X and is denoted by
ϑX.

In the same way as above, we can define the Kähler different ϑX1 of X1 =
π1(X) (or of the graded algebra RX1

/K[x0]). Similarly, we get the Kähler
different ϑX2

of X2 = π2(X) (or of the graded algebra RX2
/K[y0]). When

|X| = 1, we see that ϑX = 〈1〉 = ϑX1
RX · ϑX2

RX. In general, we have the
following relation.

Lemma 3.1. (a) We have ϑX1
RX · ϑX2

RX ⊆ ϑX.
(b) ϑX contains a bihomogeneous non-zerodivisor.

Proof. Obviously, we have IX1
S ⊆ IX and IX2

S ⊆ IX. For any G11, . . . , G1m ∈
IX1

and G21, . . . , G2n ∈ IX2
, we have {G11, . . . , G1m, G21, . . . , G2n} ⊆ IX, and

so

det

 ∂G11

∂x1
· · · ∂G11

∂xm

∂G11

∂y1
· · · ∂G11

∂yn

· · · · · · · · · · · · · · · · · ·
∂G2n

∂x1
· · · ∂G2n

∂xm

∂G2n

∂y1
· · · ∂G2n

∂yn


=
∂(G11, . . . , G1m)

∂(x1, . . . , xm)
· ∂(G21, . . . , G2n)

∂(y1, . . . , yn)
∈ ϑX,

where ∂(G11,...,G1m)
∂(x1,...,xm) denotes the image of the Jacobian determinant ∂(G11,...,G1m)

∂(X1,...,Xm)

in RX (similarly for ∂(G21,...,G2n)
∂(y1,...,yn) ). Moreover, ϑX1

RX is generated by elements

of the form ∂(G11,...,G1m)
∂(x1,...,xm) , and ϑX2RX is generated by elements of the form

∂(G21,...,G2n)
∂(y1,...,yn) , and therefore ϑX1

RX · ϑX2
RX ⊆ ϑX and (a) follows.

To prove (b), observe that xi0y
j
0 ∈ RX is a bihomogeneous non-zerodivisor for

every i, j ≥ 0. By [15, Proposition 3.5], there are k, l ∈ N such that xk0 ∈ ϑX1

and yl0 ∈ ϑX2
. Hence the non-zerodivisor xk0y

l
0 belongs to ϑX by (a). �
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Some fundamental properties of the Hilbert function of ϑX are given in the
following proposition.

Proposition 3.2. Let s1 = |X1| and s2 = |X2|.
(a) For all (i, j) ∈ N2, we have HFϑX(i, j) ≤ min{HFϑX(i+1, j),HFϑX(i, j+

1)}.
(b) For all i, j ∈ N, we have HFϑX(i, 0) ≤ HFX1

(i) and HFϑX(0, j) ≤
HFX2(j).

(c) If s1 = 1, then HFϑX(i, j) = HFϑX2
(j) for all (i, j) ∈ N2; and if s2 = 1,

then HFϑX(i, j) = HFϑX1
(i) for all (i, j) ∈ N2.

(d) For all (i, j) ∈ N2, we have

HFϑX(i, j) ≤ HFX(i, j) ≤ HFϑX(i+ (m+ 1)(s1 − 1), j + (n+ 1)(s2 − 1)).

Proof. Claim (a) follows by the fact that x0, y0 are non-zerodivisors of RX
and ϑX is a bihomogeneous ideal of RX. Note that HFϑX(i, 0) ≤ HFX(i, 0)
and HFϑX(0, j) ≤ HFX(0, j) for all i, j ∈ N. So, claim (b) follows from [22,
Proposition 3.2].

To prove (c), it suffices to consider the case s1 = 1. In this case we may
assume q1 = [1 : 0 : · · · : 0] ∈ Pm and X = {q1× q′1, . . . , q1× q′s} ⊆ Pm×Pn. We
claim that IX = 〈X1, . . . , Xm〉+IX2

S. Clearly, 〈X1, . . . , Xm〉+IX2
S ⊆ IX. Now

let F ∈ IX be bihomogeneous of degree (i, j). Using the Division Algorithm
(see e.g. [14, Proposition 1.6.4]), we may present F =

∑m
k=1HkXk+Xi

0G with
Hk ∈ Si−1,j and G ∈ K[Y0, . . . , Yn] of degree (0, j). Then

G(q1 × q′l) = (Xi
0G)(q1 × q′l) = (F −

m∑
k=1

HkXk)(q1 × q′l) = 0

for all l = 1, . . . , s. This implies G ∈ IX2 , and hence F ∈ 〈X1, . . . , Xm〉+ IX2S.
Consequently, the ideal IX has a bihomogeneous system of generators of the

form {X1, . . . , Xm, G1, . . . , Gt}, where {G1, . . . , Gt} is a homogeneous system
of generators of IX2

⊆ K[Y0, . . . , Yn]. Observe that ϑX1
= 〈1〉 and ϑX is gen-

erated by elements
∂(X1,...,Xm,Gk1

,...,Gkn )

∂(x1,...,xm,y1,...,yn) =
∂(Gk1

,...,Gkn )

∂(y1,...,yn) with {k1, . . . , kn} ⊆
{1, . . . , t}. By Lemma 3.1(a), ϑX = ϑX2RX. Moreover,

RX ∼= K[X0, Y0, . . . , Yn]/IX2
∼= RX2

[x0].

Since x0 is a non-zerodivisor of RX, we have

HFϑX(i, j) = HFϑX2RX(i, j) = dimK((ϑX2
)jx

i
0) = HFϑX2

(j)

for all (i, j) ∈ N2.
For (d), it suffices to demonstrate the inequality

HFX(i, j) ≤ HFϑX(i+ (m+ 1)(s1 − 1), j + (n+ 1)(s2 − 1)).

In the proof of Lemma 3.1(b), there exist k, l ∈ N such that h := xk0y
l
0 ∈ ϑX.

In particular, we may choose k = (m + 1)(s1 − 1) and l = (n + 1)(s2 − 1)

by [15, Proposition 3.5]. So, the multiplication map (RX)i,j
×h→ (ϑX)(i+k,j+l) is

injective as K-vector spaces. This yields that HFX(i, j) ≤ HFϑX(i+k, j+l). �
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The following corollary is a direct consequence of Propositions 2.2(d) and
3.2(d).

Corollary 3.3. In the setting of Proposition 3.2, we have HFϑX(i, j) = s for
all (i, j) � ((s1 − 1)(m+ 2), (s2 − 1)(n+ 2)).

Lemma 3.4. Let {h1, . . . , ht} be a bihomogeneous minimal system of genera-
tors of ϑX, write deg(hk) = (ik, jk) for k = 1, . . . , t and set

imax := max{ik | k = 1, . . . , t}, jmax := max{jk | k = 1, . . . , t},

and let (i, j) ∈ N2.

(a) If i ≥ imax and HFϑX(i, j) = HFϑX(i+1, j), then HFϑX(i, j) = HFϑX(i+
2, j).

(b) If j ≥ jmax and HFϑX(i, j)=HFϑX(i, j+1), then HFϑX(i, j)=HFϑX(i, j+
2).

Proof. It suffices to prove (a), since (b) is analogous. For i ≥ imax, con-
sider the multiplication map µx0,i : (ϑX)(i,j) → (ϑX)(i+1,j), h 7→ x0h. Since
HFϑX(i, j) = HFϑX(i+1, j), µx0,i is an isomorphism of K-vector spaces. So, we
have (ϑX)(i+1,j) = x0 · (ϑX)(i,j). We need to show that µx0,i+1 : (ϑX)(i+1,j) →
(ϑX)(i+2,j) is also an isomorphism of K-vector spaces. Clearly, µx0,i+1 is in-
jective, as x0 is a non-zerodivisor. Now we check that µx0,i+1 is surjective.
Let h ∈ (ϑX)(i+2,j) \ {0}. Because i ≥ imax, we may write h =

∑m
k=0 xkgk

where gk ∈ (ϑX)i+1,j . For each k ∈ {0, . . . ,m}, we write gk = x0g
′
k for some

g′k ∈ (ϑX)(i,j), and hence

h = x0g0 + · · ·+ xmgm = x0(x0g
′
0 + · · ·+ xmg

′
m) ∈ x0 · (ϑX)(i+1,j).

Therefore µx0,i+1 is surjective, as wanted to show. �

From the lemma and the fact that HFϑX(i, j) ≤ s for all (i, j) ∈ N2, we have
HFϑX(i, j) = HFϑX(imax + s, j) for all i ≥ imax + s and j ∈ N and HFϑX(i, j) =
HFϑX(i, jmax + s) for all j ≥ jmax + s and i ∈ N.

For k, l ∈ N set νk := min{i ∈ N | HFϑX(i, k) = HFϑX(imax + s, k)} and
%l := min{j ∈ N | HFϑX(l, j) = HFϑX(l, jmax + s)} and νϑX := sup{νk | k ∈ N}
and %ϑX := sup{%l | l ∈ N}. Then (νϑX , %ϑX) ≤ (imax + s, jmax + s) and if the
values of HFϑX(i, j) for finite tuples (0, 0) � (i, j) � (νϑX , %ϑX) are computed,
then we know all values of HFϑX . This leads us to the following notion.

Definition. Let (ν, %) := (νϑX , %ϑX). The pair BϑX = (BC,ϑX , BR,ϑX), where

BC,ϑX = (HFϑX(ν, 0),HFϑX(ν, 1), . . . ,HFϑX(ν, %))

and

BR,ϑX = (HFϑX(0, %),HFϑX(1, %), . . . ,HFϑX(ν, %)),

is called the border of the Hilbert function of ϑX.
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Example 3.5. Consider the set of nine points X ⊆ P2 × P2 given in Exam-
ple 2.4. We know that s1 = 3, s2 = 4, rX1

= 1, and rX2
= 2. Also, the set X

is ACM. Then a bihomogeneous minimal system of generators of ϑX consists
of 8 elements with degrees in {(1, 3), (2, 2), (3, 1), (0, 5), (3, 2)}. This implies
imax = 3 and jmax = 5. The Hilbert function of ϑX is computed by

HFϑX =



0 0 0 0 0 1 1 · · ·
0 0 0 1 2 2 2 · · ·
0 0 3 8 9 9 9 · · ·
0 1 6 8 9 9 9 · · ·
0 1 6 8 9 9 9 · · ·
...

...
...

...
...

...
...

. . .


.

It follows that νϑX = imax = 3 and %ϑX = jmax = 5 and the border of HFϑX is
BϑX = ((0, 1, 6, 8, 9, 9), (1, 2, 9, 9)).

If a bihomogeneous minimal system of ϑX is given, we can compute the tuple
(νϑX , %ϑX) using the following lemma.

Lemma 3.6. Let {h1, . . . , ht} be a bihomogeneous minimal system of genera-
tors of ϑX with deg(hk) = (ik, jk) for k = 1, . . . , t. Put

imin := min{ik | k = 1, . . . , t}, jmin := min{jk | k = 1, . . . , t}.
Then νϑX = max{νjmin

, . . . , νjmax
} and %ϑX = max{%imin

, . . . , %imax
}.

Proof. For (i, j) ∈ N2 with i < imin or j < jmin, it is clearly true that
HFϑX(i, j) = 0. By the definition of νj and νϑX , we have νj = 0 if j < jmin and
νϑX ≥ νk for k ≥ 0. It suffices to show that νjmax

≥ νk for all k ≥ jmax.
When k = jmax and i ≥ νjmax , we have HFϑX(i, k) = HFϑX(i + 1, k). So,

x0(ϑX)i,k = (ϑX)i+1,k, since x0 is a non-zerodivisor of RX. Also, for any l ≥
0, (ϑX)l,k+1 contains no minimal generators, and hence (ϑX)l,k+1 = (ϑX)l,k ·
(RX)0,1. This implies (ϑX)i+1,k+1 = (ϑX)i+1,k · (RX)0,1 = x0(ϑX)i,k · (RX)0,1 =
x0(ϑX)i,k+1. Thus HFϑX(i, k + 1) = HFϑX(i + 1, k + 1) for any i ≥ νjmax

, and
so νk ≥ νk+1. By induction on k, we get νjmax ≥ νk for all k ≥ jmax, and
this completes the proof of the equality for νϑX . The equality for %ϑX can be
achieved similarly using the non-zerodivisor y0 ∈ (RX)0,1. �

As a consequence of the lemma, when ϑX is a principal ideal then νϑX =
νjmin

= νjmax
and %ϑX = %imin

= %imax
.

4. Special ACM sets

In this section we look at finite sets of points in Pm×Pn having the complete
intersection or Cayley-Bacharach properties. As before, we let X = {p1, . . . , ps}
be a set of s distinct points in Pm× Pn.

Definition. (a) X is called a complete intersection if its bihomogeneous
ideal IX is generated by a bihomogeneous regular sequence.
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(b) If IX is generated by {F1, . . . , Fm, G1, . . . , Gn} which forms a bihomo-
geneous regular sequence with Fi ∈ Sdi,0 and Gj ∈ S0,d′j

for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, we say that X is a complete intersection of type
(d1, . . . , dm, d

′
1, . . . , d

′
n) and write CI(d1, . . . , dm, d

′
1, . . . , d

′
n).

It is worth noticing that every complete intersection X is ACM. When X =
X1×X2, where Xk = πk(X) for k = 1, 2 (see Convention 2.1), we also have the
following property.

Lemma 4.1. Let IX1
, IX2

be the homogeneous vanishing ideals of X1 and X2,
respectively. If X = X1 × X2, then X is ACM with IX = IX1

S + IX2
S and

HFX(i, j) = HFX1
(i) ·HFX2

(j)

for all (i, j) ∈ Z2.

Proof. The ACM property of X and the equality IX1S+ IX2S = IX follow from
[1, Theorem 2.1] and [3, Lemma 3.5]. Moreover, we have RX ∼= RX1 ⊗K RX2 by
[17, G.2], where RX1

= K[x0, . . . , xm]/IX1
is the homogeneous coordinate ring

of X1 ⊆ Pm and RX2
= K[y0, . . . , yn]/IX2

is the homogeneous coordinate ring
of X2 ⊆ Pn. Therefore we get the equality HFX(i, j) = HFX1

(i) · HFX2
(j) for

all (i, j) ∈ Z2. �

As a direct consequence of the lemma, we get the following shape of the
border of the Hilbert function of X for this case.

Corollary 4.2. In the setting of Lemma 4.1, let sk = |Xk| and let rXk
be the

regularity index of HFXk
for k = 1, 2. The border BX = (BC , BR) of the Hilbert

function of X is given by

BC = (s1, s1 HFX2
(1), . . . , s1 HFX2

(rX2
) = s1s2)

and

BR = (s2, s2 HFX1(1), . . . , s2 HFX1(rX1) = s1s2).

Notice that if X = X1 ×X2, then it is also ACM by Lemma 4.1, so that the
Kähler different of X exists.

Proposition 4.3. If X = X1 × X2, then the Kähler different ϑX satisfies

ϑX = ϑX1
RX · ϑX2

RX.

In addition, if X = CI(d1, . . . , dm, d
′
1, . . . , d

′
n), then ϑX is a bihomogeneous

principal ideal and has Hilbert function

HFϑX(rX1 + i, rX2 + j) = HFX(i, j)

for all (i, j) ∈ N2, where rX1
=

∑m
k=1 dk −m and rX2

=
∑n
l=1 d

′
l − n.

Proof. Suppose that {F1, . . . , Fr} is a homogeneous system of generators of
IX1

and {G1, . . . , Gt} is a homogeneous system of generators of IX2
. Then
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Lemma 4.1 yields that the relation matrix of Ω1
R/Ro

with respect to {dx1, . . .,

dxm, dy1, . . . , dyn} is

∂F1

∂x1
· · · ∂F1

∂xm
0 · · · 0

...
. . .

...
...

. . .
...

∂Fr

∂x1
· · · ∂Fr

∂xm
0 · · · 0

0 · · · 0 ∂G1

∂y1
· · · ∂G1

∂yn
...

. . .
...

...
. . .

...

0 · · · 0 ∂Gt

∂y1
· · · ∂Gt

∂yn


.

Because
∂(Fi1 ,...,Fik

,Gik+1
,...,Gin+m

)

∂(x1,...,xm,y1,...,yn) = 0 if k 6= m, it follows that ϑX is generated

by elements of the form
∂(Fi1 ,...,Fim ,Gj1 ,...,Gjn )

∂(x1,...,xm,y1,...,yn) where {i1, . . . , im} ⊆ {1, . . . , r}
and {j1, . . . , jn} ⊆ {1, . . . , t}. But this element can be written as

∂(Fi1 , . . . , Fim , Gj1 , . . . , Gjn)

∂(x1, . . . , xm, y1, . . . , yn)
=
∂(Fi1 , . . . , Fim)

∂(x1, . . . , xm)
· ∂(Gj1 , . . . , Gjn)

∂(y1, . . . , yn)
.

Hence we get ϑX = ϑX1
RX ·ϑX2

RX. If X = CI(d1, . . . , dm, d
′
1, . . . , d

′
n) = X1×X2,

then X1 and X2 are complete intersections. By [15, Corollary 2.6], ϑX1 is
a principal ideal generated by a homogeneous non-zerodivisor of degree rX1

and ϑX2
is a principal ideal generated by a homogeneous non-zerodivisor of

degree rX2
, and hence ϑX is a principal ideal generated by a homogeneous

non-zerodivisor of degree (rX1
, rX2

). This also implies the claimed formula for
HFϑX . �

Corollary 4.4. If X = CI(d1, . . . , dm, d
′
1, . . . , d

′
n) and BX = (BC , BR), then

we have (νϑX , %ϑX) = (2rX1
, 2rX2

) and the border of the Hilbert function ϑX is
given by

BϑX = ((0, . . . , 0︸ ︷︷ ︸
rX2

, BC), (0, . . . , 0︸ ︷︷ ︸
rX1

, BR)).

Recall that for a finite set X of points in Pm and p ∈ X, a minimal separator
of p is a homogeneous element F ∈ K[X0, . . . , Xm] of minimal degree such that
F (p) 6= 0 and F (p′) = 0 for all p′ ∈ X \ {p}. The degree degX(p) of p in X is
the degree of a minimal separator of p. We have degX(p) ≤ rX for every point
p ∈ X, where rX is the regularity index of HFX (see [4, Lemma 2.4]). We say
that X is a Cayley-Bacharach scheme if all points of X have the same degree
rX. For many interesting results and more information about these notions in
the standard case, see [4, 13].

Now we look at the generalization of these notions for a (not necessary ACM)
set X of s distinct points in Pm× Pn. In the same manner as above, for each
p ∈ X, a bihomogeneous form F ∈ S is a separator of p in X if F (p) 6= 0 and
F (p′) = 0 for all p′ ∈ X\{p}, and a separator F ∈ S of p in X is minimal if there
does not exist a separator G of p with deg(G) ≺ deg(F ). For the existence of a
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finite set of minimal separators of any point in X and their properties, see e.g.
[8, 9, 18].

Definition. The degree of a point p ∈ X is the set

degX(p) = {deg(F ) | F is a minimal separator of p}.

For any (i, j) ∈ N2, we define D(i,j) := {(k, l) ∈ N2 | (i, j) � (k, l)} and for a

finite set Σ = {(i1, j1), . . . , (it, jt)} ⊆ N2 we put DΣ :=
⋃t
k=1D(ik,jk). Clearly,

for every (i, j) ∈ DdegX(p), there exists a separator F of p with deg(F ) = (i, j).
In the following we collect several useful properties of degrees of points in X
(see [8, Theorem 5.7] and [9, Theorem 2.2]).

Theorem 4.5. Let p ∈ X and Y = X \ {p}.
(a) If {F1, . . . , Ft} is a set of minimal separators of p, then IY = IX +
〈F1, . . . , Ft〉.

(b) We have

HFY(i, j) =

{
HFX(i, j) if (i, j) /∈ DdegX(p),

HFX(i, j)− 1 if (i, j) ∈ DdegX(p).

(c) If X is ACM, then |degX(p)| = 1 for every p ∈ X.

The converse of Theorem 4.5(c) holds true for n = m = 1 by [10, Theorem 8]
or [18, Theorem 6.7], but it fails to hold in general (see [8, Example 5.10] for
an example in P2 × P2). When X is ACM, we write degX(p) = (i, j) instead of
degX(p) = {(i, j)}.

Definition. The set X is said to have the Cayley-Bacharach property if the
Hilbert function of X\{p} is independent of the choice of p ∈ X, or equivalently,
if all of its points have the same degree.

In [5, Proposition 7.3], we know that X = CI(d1, d
′
1) if and only if X has the

Cayley-Bacharach property. However, it fails to hold in general as the following
example shows.

Example 4.6. In P1 × P2, consider the set X = X1 × X2 of six points, where
X1 = {q1, q2} ⊆ P1 with q1 = (1 : 0), q2 = (1 : 1), and X2 = {q′1, q′2, q′3} ⊆ P2

with q′1 = (1 : 0 : 0), q′2 = (1 : 1 : 0), q′3 = (1 : 1 : 1). Then IX has a
bihomogeneous minimal system of generators given by

{x0x1 − x2
1, y0y1 − y2

1 , y1y2 − y2
2 , y0y2 − y2

2 },

so X is not a complete intersection. On the other hand, X1 ⊆ P1 is a complete
intersection with rX1

= 1, and hence X1 is a Cayley-Bacharach scheme, and
X2 = {q′1, q′2, q′3} ⊆ P2 is also a Cayley-Bacharach scheme with rX2

= 1. Using
ApCoCoA we can check that deg(qi×q′j) = (1, 1) for all i = 1, 2 and j = 1, 2, 3.
Thus X = X1 × X2 has the Cayley-Bacharach property (this also follows by
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Proposition 4.9). In this case the Kähler different has its Hilbert function

HFϑX =


0 0 0 0 · · ·
0 0 3 3 · · ·
0 0 6 6 · · ·
0 0 6 6 · · ·
...

...
...

...
. . .


and HFϑX(rX1

, rX2
) = HFϑX(1, 1) = 0.

Using the Kähler different, we give a characterization of complete intersec-
tions of type (d1, . . . , dm, d

′
1, . . . , d

′
n) as follows.

Theorem 4.7. For a set X of s distinct points in Pm× Pn, the following
statements are equivalent.

(a) X = CI(d1, . . . , dm, d
′
1, . . . , d

′
n) for some positive integers di, d

′
j ≥ 1.

(b) X = X1×X2 and X1⊆Pm is a complete intersection of type (d1, . . . , dm)
and X2 ⊆ Pn is a complete intersection of type (d′1, . . . , d

′
n).

(c) X = X1×X2 has the Cayley-Bacharach property and HFϑX(rX1
, rX2

) 6=
0.

In the proof of this theorem, we use the following properties.

Lemma 4.8. For an ACM set of s points X ⊆ Pm× Pn, if q × q′ ∈ X, then

degX(q × q′) � (degX1
(q),degX2

(q′)) � (rX1
, rX2

).

Proof. Since X is ACM, and so each point of X has exactly one degree. The
claim follows from the fact that if Fk is a separator of q in X1 and Gl is a
separator of q′ in X2, then FkGl is also a separator of q × q′ in X. �

Proposition 4.9. Suppose X = X1 × X2 ⊆ Pm× Pn. Then X has the Cayley-
Bacharach property if and only if X1 and X2 are Cayley-Bacharach schemes.

Proof. Note that X is ACM. Let us write X1 = {q1, . . . , qs1} ⊆ Pm and X2 =
{q′1, . . . , q′s2} ⊆ P

n. Firstly, we prove that

degX(qk × q′l) = (degX1
(qk),degX2

(q′l))

for all 1 ≤ k ≤ s1, 1 ≤ l ≤ s2. According to Lemma 4.8, it suffices to show
that degX(qk×q′l) � (degX1

(qk),degX2
(q′l)). Suppose degX(qk×q′l) = (i, j). Let

F ∈ Si,j be a minimal separator of the point qk × q′l. Then F =
∑
uGuHu

with Gu ∈ Si,0 and Hu ∈ S0,j . Let T1, . . . , Tmi
∈ Si,0 (resp. T ′1, . . . , T

′
nj
∈

S0,j) be terms whose residue classes form a K-basis of Si,0/(IX1
S)i,0 (resp.

S0,j/(IX2
S)0,j). This enables us to write Gu = au1T1 + · · · + aumi

Tmi
+ G′u

with G′u ∈ (IX1S)i,0 and aur ∈ K, Hu = bu1T
′
1 + · · · + bunjT

′
nj

+ H ′u with

H ′u ∈ (IX2
S)0,j and but ∈ K. Since IX = IX1

S + IX2
S, we have

F =
∑
u

GuHu =
∑

1≤r≤mi,1≤t≤nj

crtTrT
′
t (mod IX), with crt =

∑
u

aurbut.



944 N. T. HOA, T. N. K. LINH, L. N. LONG, P. T. T. NHAN, AND N. T. P. NHI

Put Fk :=
∑
rt crtT

′
t (q
′
l)Tr ∈ Si,0. Since F (qk × q′l) 6= 0, we have Fk(qk) 6=

0. Moreover, Fk(qk′) = F (qk′ × q′l) = 0 for k′ 6= k. So, Fk is a separator
of qk in X1, and this yields i ≥ degX1

(qk). Analogously, the element Gl :=∑
rt crtTr(qk)T ′t ∈ S0,j is a separator of q′l in X2, and hence j ≥ degX2

(q′l).
Thus, (i, j) � (degX1

(qk),degX2
(q′l)), and therefore we get degX(qk × q′l) =

(degX1
(qk),degX2

(q′l)) for all k, l.
If X1 and X2 are Cayley-Bacharach schemes, then

degX(qk × q′l) = (degX1
(qk),degX2

(q′l)) = (rX1 , rX2)

for all 1 ≤ k ≤ s1 and 1 ≤ l ≤ s2, and hence X has the Cayley-Bacharach
property. Conversely, suppose that X has the Cayley-Bacharach property, but
X1 is not a Cayley-Bacharach-scheme. Then there is a point qk ∈ X1 such
that degX1

(qk) < rX1 . By [4, Proposition 1.14], we find qk′ ∈ X1 such that
degX1

(qk′) = rX1 and q′l ∈ X2 such that degX2
(q′l) = rX2 . This implies

degX(qk × q′l) � (rX1 − 1, rX2) ≺ (rX1 , rX2) = degX(qk′ × ql),

and thus X does not have the Cayley-Bacharach property, a contradiction.
Therefore, X1 is a CB-scheme, so is X2. �

Proof of Theorem 4.7. The implication “(b)⇒(a)” follows from Lemma 4.1. To
prove “(a)⇒(b)”, suppose that X = CI(d1, . . . , dm, d

′
1, . . . , d

′
n) for some positive

integers di, d
′
j ≥ 1. Then IX = 〈F1, . . . , Fm, G1, . . . , Gn〉S with deg(Fi) =

(di, 0) and deg(Gj) = (0, d′j), particularly, IX1 = 〈F1, . . . , Fm〉 is a saturated
homogeneous ideal of K[X0, . . . , Xm] defining a complete intersection X1 ⊆ Pm
and IX2

= 〈G1, . . . , Gn〉 is a saturated homogeneous ideal of K[Y0, . . . , Yn]
defining a complete intersection X2 ⊆ Pn. Moreover, it is not hard to verify
that X = X1 × X2.

The implication “(b)⇒(c)” holds true by Proposition 4.3 and Proposition 4.9
and the fact that a complete intersection set of s points in Pm is always a
Cayley-Bacharach scheme.

Now we prove “(c)⇒(b)”. It suffice to show that X1 is a complete inter-
section in Pm (similarly for X2 ⊆ Pn). By assumption, X has the Cayley-
Bacharach property, then X1 and X2 are Cayley-Bacharach schemes by Propo-
sition 4.9. According to Proposition 4.3, we have ϑX = ϑX1

RX · ϑX2
RX, and

so HFϑX(rX1
, rX2

) 6= 0 implies HFϑX1
(rX1

) 6= 0. By [12, Theorem 5.6], X1 is a
complete intersection, as desired. �

Lemma 4.10. If X = X1 × X2 and for every point p ∈ X the Kähler different
ϑX contains no separator of p of degree ≺ (mrX1 , nrX2), then X has the Cayley-
Bacharach property.

Proof. Suppose that X does not have the Cayley-Bacharach property. By
Proposition 4.9, X1 or X2 is not a Cayley-Bacharach scheme. Assume that
X1 is not a Cayley-Bacharach scheme. There is i ∈ {1, . . . , s1} such that
degX1

(qi) ≤ rX1 − 1. Let Fi ∈ K[X0, . . . , Xm] be a minimal separator of qi in
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X1 and G1 ∈ K[Y0, . . . , Yn] be a minimal separator of q′1 in X2. By [15, Corol-
lary 2.6], the image of Fmi in RX1

belongs to ϑX1
and the image of Gn1 in RX2

belongs to ϑX2 . So, the image of Fmi G
n
1 in RX is contained in ϑX. Moreover,

Fmi G
n
1 is a separator of qi × q′1 in X of degree � (m(rX1 − 1), nrX2). This

contradicts to the assumption. �

5. Finite Sets with the (?)-property

Now we investigate the Cayley-Bacharach property for a finite set X of points
in Pm×Pn which satisfies the (?)-property. According to [8, Definition 4.2], the
set X is said to have the (?)-property if whenever q1 × q′1 and q2 × q′2 are two
points in X with q1 6= q2 and q′1 6= q′2, then either q1 × q′2 or q2 × q′1 (or both)
is also in X. By [3, Theorem 3.7], if X has the (?)-property, then X is ACM.
Except for the case m = n = 1, the converse of this result does not hold true
in general (see [8, Theorem 4.3 and Example 4.9] and [3, Example 4.2]). As
before, for an ACM set X we always assume that x0, y0 form a regular sequence
in RX.

Write X1 = π1(X) = {q1, . . . , qs1} ⊆ Pm and X2 = π2(X) = {q′1, . . . , q′s2} ⊆
Pn. For i = 1, . . . , s1 and j = 1, . . . , s2, put

Wi := π2(π−1
1 (qi) ∩ X) ⊆ X2, Vj := π1(π−1

2 (q′j) ∩ X) ⊆ X1.

After renaming, we can always assume that |Ws1 | ≤ · · · ≤ |W1| ≤ s2 and
|Vs2 | ≤ · · · ≤ |V1| ≤ s1. When X has the (?)-property, we may assume X1 =
V1 ⊇ · · · ⊇ Vs2 and X2 = W1 ⊇ · · · ⊇Ws1 (see e.g. [3, Lemma 3.4]).

Proposition 5.1. If X has the (?)-property, then for qi × q′j ∈ X we have

degX(qi × q′j) = (degVj
(qi),degWi

(q′j)).

Proof. Since X is ACM, we have degX(qi × q′j) = (r, t) for some (r, t) ∈ N2.
Clearly, qi ∈ Vj and q′j ∈ Wi. Let G ∈ (K[X0, . . . , Xm])degVj

(qi) be a minimal

separator of qi in Vj and G′ ∈ (K[Y0, . . . , Yn])degWi
(q′j) be a minimal separator

of q′j in Wi. Set F := GG′ ∈ S. Observe that F (qi × q′j) = G(qi)G
′(q′j) 6= 0.

Let q × q′ ∈ X \ {qi × q′j}. If q ∈ Vj \ {qi} or q′ ∈ Wi \ {q′j}, then G(q) = 0
or G′(q′) = 0, and so F (q × q′) = 0. Now consider the case q /∈ Vj \ {qi} and
q′ /∈Wi \ {q′j}. There are the following three cases:

• If q = qi and q′ 6= q′j , then q′ ∈Wi \ {q′j}, a contradiction.
• If q′ = q′j and q 6= qi, then q ∈ Vj \ {qi}, a contradiction.
• If q 6= qi and q′ 6= q′j , then the (?)-property of X implies q × q′j or
qi× q′ ∈ X. It follows that q ∈ Vj \{qi} or q′ ∈Wi \{q′j}. This is again
a contradiction.

Altogether, F (qi × q′j) 6= 0 and F (q × q′) = 0 for all q × q′ ∈ X \ {qi × q′j}.
Hence F is a separator of qi × q′j with deg(F ) = (degVj

(qi),degWi
(q′j)), and so

(r, t) � (degVj
(qi),degWi

(q′j)).
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Furthermore, if (r, t) ≺ (degVj
(qi),degWi

(q′j)), then there is a minimal sep-

arator F̃ 6= 0 of qi × q′j with deg(F̃ ) = (r, t) and r < degVj
(qi) or t <

degWi
(q′j). Suppose that r < degVj

(qi) (a similar argument for the case

t < degWi
(q′j)). Set Y := Vj × {q′j} ⊆ X. Then F̃ is also a separator of

qi × q′j in Y. As in the proof of Proposition 4.9, we have degY(qi × q′j) =

(degVj
(qi), 0). This implies (degVj

(qi), 0) � deg(F̃ ) = (r, t), in particularly,

we get degVj
(qi) ≤ r < degVj

(qi), a contradiction. Therefore it must be

(r, t) = (degVj
(qi),degWi

(q′j)). �

Theorem 5.2. Let X ⊆ Pm×Pn have the (?)-property. Then X has the Cayley-
Bacharach property if and only if the following conditions are satisfied:

(a) V1, . . . , Vs2 are Cayley-Bacharach schemes in Pm and rV1 = · · · = rVs2
;

(b) W1, . . . ,Ws1 are Cayley-Bacharach schemes in Pn and rW1
= · · · =

rWs1
.

Proof. If X satisfies the conditions (a) and (b), then (a) implies degVj
(q) = rV1

for all q ∈ Vj and for j = 1, . . . , s2, while (b) implies degWi
(q′) = rW1

for all
q′ ∈ Wi and for i = 1, . . . , s1. By Proposition 5.1, we obtain deg(q × q′) =
(rV1

, rW1
) for all q × q′ ∈ X. Therefore X has the Cayley-Bacharach property.

Conversely, suppose that X has the Cayley-Bacharach property, i.e., there is
(r, t) ∈ N2 such that degX(q × q′) = (r, t) for all q × q′ ∈ X. Note that we may
here assume that X1 = V1 ⊇ · · · ⊇ Vs2 and X2 = W1 ⊇ · · · ⊇ Ws1 . Especially,
{q1} × X2 ⊆ X and X1 × {q′1} ⊆ X. According to [4, Proposition 1.14], X1

always contains a point qi of degree rX1
and X2 always contains a point q′j of

degree rX2
. From deg(q1 × q′1) = · · · = deg(qs1 × q′1) = (r, t), Proposition 5.1

yields

r = degV1
(q1) = · · · = degV1

(qs1) = degX1
(qi) = rX1

.

Similarly, it follows from deg(q1 × q′1) = · · · = deg(q1 × q′s2) = (r, t) and
Proposition 5.1 that

t = degW1
(q′1) = · · · = degW1

(q′s2) = degX2
(q′j) = rX2

.

In particular, X1 and X2 are Cayley-Bacharach schemes. Moreover, we have
rVs2

≤ · · · ≤ rV1
= rX1

and rWs1
≤ · · · ≤ rW1

= rX2
. Thus (rX1

, rX2
) =

degX(qi × q′j) = (degVj
(qi),degWi

(q′j)) ≤ (rVj
, rWi

) for all qi × q′j ∈ X implies
rVs2

= · · · = rV1
= rX1

and rWs1
= · · · = rW1

= rX2
and all V1, . . . , Vs2 ⊆ Pm

and W1, . . . ,Ws1 ⊆ Pn are Cayley-Bacharach schemes. �

The next corollary is a direct consequence of Theorem 5.2.

Corollary 5.3. Let X⊆ Pm× Pn have the (?)-property. If X has the Cayley-
Bacharach property, then X1⊆ Pm and X2⊆ Pn are Cayley-Bacharach schemes.

Example 5.4. Let K = Q and X be the set of 24 points in P2 × P2 given by
X = X1×X2\{q5×q5}, where X1 = X2 = {q1, . . . , q5} ⊆ P2 with q1 = (1 : 0 : 0),
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q2 = (1 : 1 : 0), q3 = (1 : 0 : 1), q4 = (1 : 1 : 1) and q5 = (1 : 1 : 2) (see the
figure below).

X =

Then we have V1 = V2 = V3 = V4 = X1, V5 = X1 \ {q5}, W1 = W2 = W3 =
W4 = X2 and W5 = X2 \ {q5}. Then V5, W5 are complete intersections in P2,
and so Cayley-Bacharach schemes. Also, X1 is a Cayley-Bacharach scheme in
P2 and rX1 = 2 = rV5 = rW5 . So, the conditions (a) and (b) in Theorem 5.2
are satisfied, and therefore X has the Cayley-Bacharach property.

Proposition 5.5. Let X ⊆ P1 × Pn have the (?)-property. Then X has the
Cayley-Bacharach property if and only if X = X1 × X2 and X2 ⊆ Pn is a
Cayley-Bacharach scheme.

Proof. Note that every finite set V in P1 is a complete intersection and rV =
|V |−1. Suppose that X has the Cayley-Bacharach property. Then Theorem 5.2
yields X1 = V1 = · · · = Vs2 and X2 = W1 ⊇ · · · ⊇ Ws1 an descending chain
of Cayley-Bacharach schemes with rX2

= rW1
= · · · = rWs1

. For j = 1, . . . , s2,

we have π1(π−1
2 (q′j) ∩ X) = Vj = {q1, . . . , qs1}, and so π−1

2 (q′j) ∩ X = {q1 ×
q′j , . . . , qs1 × q′j} ⊆ X. Hence X1 × X2 ⊆ X, and therefore X = X1 × X2.
Conversely, assume that X = X1×X2 and X2 is a Cayley-Bacharach scheme in
Pn. Clearly, X1 ⊆ P1 is a complete intersection, and hence a Cayley-Bacharach
scheme. By Proposition 4.9, X has the Cayley-Bacharach property. �

Corollary 5.6. Let X ⊆ P1 × Pn have the (?)-property. Then the following
statements are equivalent:

(a) X = CI(d1, d
′
1, . . . , d

′
n) for some positive integers d1, d

′
1, . . . , d

′
n ≥ 1.

(b) X has the Cayley-Bacharach property and HFϑX(d1 − 1, rX2
) 6= 0.

Proof. This follows directly from Theorem 4.7 and Proposition 5.5. �
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