Acknowledgement
The author would like to express their sincere thanks for the referee for his/her helpful suggestions and comments, which have greatly improved this paper.
References
- K. Adarbeh and S. Kabbaj, Matlis' semi-regularity in trivial ring extensions of integral domains, Colloq. Math. 150 (2017), no. 2, 229-241. https://doi.org/10.4064/cm7032-12-2016
- K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (2015), no. 3, 625-632.
- D. F. Anderson and A. Badawi, On φ-Prufer rings and φ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- D. D. Anderson and M. Zafrullah, Almost Bezout domains, J. Algebra 142 (1991), no. 2, 285-309. https://doi.org/10.1016/0021-8693(91)90309-V
- A. Azizi and A. Nikseresht, Simplified radical formula in modules, Houston J. Math. 38 (2012), no. 2, 333-344.
- F. Cheniour, On B'ezout rings, Int. J. Algebra 6 (2012), no. 29-32, 1507-1511.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
- M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
- H. El Alaoui and H. Mouanis, About weakly B'ezout rings, Bol. Soc. Paran. Mat. 40 (2022). https://doi.org/10.5269/bspm.44605
- L. Gillman and M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362-365. https://doi.org/10.2307/1993053
- S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- S. Kabbaj, On the dimension theory of polynomial rings over pullbacks, in Multiplicative ideal theory in commutative algebra, 263-277, Springer, New York, 2006. https://doi.org/10.1007/978-0-387-36717-0_16
- S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB200027791
- M. Kabbour and N. Mahdou, Amalgamation of rings defined by Bezout-like conditions, J. Algebra Appl. 10 (2011), no. 6, 1343-1350. https://doi.org/10.1142/S0219498811005683
- I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491. https://doi.org/10.2307/1990591
- M. D. Larsen, W. J. Lewis, and T. S. Shores, Elementary divisor rings and finitely presented modules, Trans. Amer. Math. Soc. 187 (1974), 231-248. https://doi.org/10.2307/1997051
- N. Mahdou and M. A. S. Moutui, Amalgamated algebras along an ideal defined by Gaussian condition, J. Taibah Univ. for Science 9 (2015), 373-379. https://doi.org/10.1016/j.jtusci.2015.02.022
- M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
- J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc., New York, 1979.