DOI QR코드

DOI QR Code

Analysis and design of composite-structure resonant switched-capacitor voltage equalization topology for series energy storage systems

  • Liao, Wubing (School of Electric Power Engineering, South China University of Technology) ;
  • Chen, Yuanrui (School of Electric Power Engineering, South China University of Technology) ;
  • Zeng, Jun (School of Electric Power Engineering, South China University of Technology) ;
  • Hong, Xiaobin (School of Mechanical and Automotive Engineering, South China University of Technology)
  • Received : 2021.05.25
  • Accepted : 2021.12.23
  • Published : 2022.04.20

Abstract

Existing voltage equalization topologies based on the switched-capacitor (SC) operate in the hard-switch state with large energy losses and slow balancing speeds. Therefore, a voltage equalization topology derived from a composite-structure resonant switched-capacitor is proposed in this paper. The proposed topology can achieve zero-current operation and modularity, which reduces system loss and cost. Meanwhile, it can provide two equalization paths from one cell to any other cell, which improves its balancing speed. The zero-current operation, equivalent circuit, design guidelines, and modularization designs for the proposed topology are analyzed in detail. An experiment prototype is established. Results obtained with the prototype verify that the proposed equalizer can achieve zero-current switching (ZCS), high balancing efficiency, and decoupling characteristic between the balancing time and the number of storage cells.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (Nos. 62173148, 51877085).

References

  1. Uno, M., Tanaka, K.: Single-switch multioutput charger using voltage multiplier for series-connected lithium-ion battery/supercapacitor equalization. IEEE Trans. Ind. Electron. 60(8), 3227-3239 (2013) https://doi.org/10.1109/TIE.2012.2203776
  2. Xu, A., Xie, S., Liu, X.: Dynamic voltage equalization for series-connected ultracapacitors in EV/HEV applications. IEEE Trans. Veh. Technol. 58(8), 3981-3987 (2009) https://doi.org/10.1109/TVT.2009.2028148
  3. Iraola, U., Aizpuru, I., Gorrotxategi, L., Segade, J.M.C., Larrazabal, A.E., Gil, I.: Influence of voltage balancing on the temperature distribution of a Li-Ion battery module. IEEE Trans. Energy Convers. 30(2), 507-514 (2015) https://doi.org/10.1109/TEC.2014.2366375
  4. Lozano, J.G., Cadaval, E.R.: Battery equalization active methods. J. Power Sources 246, 934-949 (2014) https://doi.org/10.1016/j.jpowsour.2013.08.026
  5. Martin-Ibanez, F., Idrisov, I., Martin, F., Rujas, A.: Design Balancing Systems for Supercapacitors Based on Their Stochastic Model. IEEE Trans. Energy Convers. 35(2), 733-745 (2020) https://doi.org/10.1109/tec.2020.2968364
  6. Uno, M., Tanaka, K.: Double-switch single-transformer cell voltage equalizer using a half-bridge inverter and voltage multiplier for series connected supercapacitors. IEEE Trans. Veh. Technol. 61(9), 3920-3930 (2012) https://doi.org/10.1109/TVT.2012.2215892
  7. Uno, M., Yashiro, K., Hasegawa, K.: Modularized equalization architecture with voltage multiplier-based cell equalizer and switchless switched capacitor converter-based module equalizer for series-connected electric double-layer capacitors. IEEE Trans. Power Electron. 34(7), 6356-6368 (2019) https://doi.org/10.1109/tpel.2018.2876061
  8. Yang, X., Xi, L., Gao, Z., Li, Y., Wen, J.: Analysis and design of a voltage equalizer based on boost full-bridge inverter and symmetrical voltage multiplier for series-connected batteries. IEEE Trans. Veh. Technol. 69(4), 3828-3840 (2020) https://doi.org/10.1109/tvt.2020.2974530
  9. Chen, Y., Liu, X., Cui, Y., Zou, J., Yang, S.: A multi-winding transformer cell-to-cell active equalization method for lithium-ion batteries with reduced number of driving circuits. IEEE Trans. Power Electron. 31(7), 4916-4929 (2016) https://doi.org/10.1109/TPEL.2015.2482500
  10. Evzelman, M., Rehman, M.M.U., Hathaway, K., Zane, R., Costinett, D., Maksimovic, D.: Active balancing system for electric vehicles with incorporated low-voltage bus. IEEE Trans. Power Electron. 31(11), 7887-7895 (2016) https://doi.org/10.1109/TPEL.2015.2513432
  11. Pham, V.L., Duong, V.T., Choi, W.: High-efficiency active cell-to-cell balancing circuit for Lithium-Ion battery modules using LLC resonant converter. J. Power Electron. 20, 1037-1046 (2020) https://doi.org/10.1007/s43236-020-00088-6
  12. Imitiaz, A.M., Khan, F.H.: Time shared flyback converter" based regenerative cell balancing technique for series connected li-ion battery strings. IEEE Trans. Power Electron. 28(12), 5960-5975 (2013) https://doi.org/10.1109/TPEL.2013.2257861
  13. Zhigang, G., Fenlin, J., Han, G.: A modular battery equalizer based on zero-voltage-switching converters. In: 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, 2015, pp. 543-546.
  14. Peng, F., Wang, H., Yu, L.: Analysis and design considerations of efficiency enhanced hierarchical battery equalizer based on bipolar CCM buck-boost units. IEEE Trans. Ind. Appl. 55(4), 4053-4063 (2019) https://doi.org/10.1109/tia.2019.2916493
  15. Kim, M., Kim, J., Moon, G.: Center-cell concentration structure of a cell-to-cell balancing circuit with a reduced number of switches. Trans. Power Electron. 29(10), 5285-5297 (2014) https://doi.org/10.1109/TPEL.2013.2292078
  16. Mestrallet, F., Kerachev, L., Crebier, J.-C., Collet, A.: Multiphase interleaved converter for lithium battery active balancing. IEEE Trans. Power Electron. 29(6), 2874-2881 (2014) https://doi.org/10.1109/TPEL.2013.2276152
  17. Bat-Orgil, T., Dugarjav, B., Shimizu, T.: Cell equalizer for recycling batteries from hybrid electric vehicles. J. Power Electron. 20, 811-822 (2020) https://doi.org/10.1007/s43236-020-00064-0
  18. Shang, Y., Zhang, Q., Cui, N., Duan, B., Zhou, Z., Zhang, C.: Multicell-to-multicell equalizers based on matrix and half-bridge LC converters for series-connected battery strings. IEEE J. Emerg. Sel. Topics Power Electron. 8(2), 1755-1766 (2020) https://doi.org/10.1109/jestpe.2019.2893167
  19. Pascual, C, Krein, P. T.: Switched capacitor system for automatic series battery equalization. Proceedings of APEC 97 - Applied Power Electronics Conference, Atlanta, GA, USA, vol. 2, pp. 848-854 (1997)
  20. Kim, M., Kim, C., Kim, J., Moon, G.: A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries. IEEE Trans. Ind. Electron. 61(8), 3989-3999 (2014) https://doi.org/10.1109/TIE.2013.2288195
  21. Baughman, A.C., Ferdowsi, M.: Double-tiered switched-capacitor battery charge equalization technique. IEEE Trans. Ind. Electron. 55(6), 2277-2285 (2008) https://doi.org/10.1109/TIE.2008.918401
  22. Wang, X., Cheng, K.W.E., Fong, Y.C.: Series-parallel switched-capacitor balancing circuit for hybrid source package. IEEE Access 6, 34254-34261 (2018) https://doi.org/10.1109/access.2018.2849864
  23. Liu, J., Gao, P., Liao, W., Zeng, J.: An integrated energy storage system with voltage balancing based on switched-capacitor reutilization techniques. IEEE Trans. Veh. Technol. 69(8), 8356-8366 (2020) https://doi.org/10.1109/tvt.2020.2996668
  24. Ye, Y., Cheng, K.W.E., Fong, Y.C., Xue, X., Lin, J.: Topology, modeling and design of switched-capacitor-based cell balancing systems and their balancing exploration. IEEE Trans. Power Electron. 32(6), 4444-4454 (2017) https://doi.org/10.1109/TPEL.2016.2584925
  25. Shang, Y., Zhang, C., Cui, N., Mi, C.C.: A delta-structured switched-capacitor equalizer for series-connected battery strings. IEEE Trans. Power Electron. 34(1), 452-461 (2019) https://doi.org/10.1109/tpel.2018.2826010
  26. Shang, Y., Cui, N., Duan, B., Zhang, C.: Analysis and optimization of star-structured switched-capacitor equalizers for series-connected battery strings. IEEE Trans. Power Electron. 33(11), 9631-9646 (2018) https://doi.org/10.1109/tpel.2017.2787909
  27. Shang, Y., Zhang, Q., Cui, N., Duan, B., Zhang, C.: An optimized mesh-structured switched-capacitor equalizer for lithium-ion battery strings. IEEE Trans. Transport. Electrifc. 5(1), 252-261 (2019) https://doi.org/10.1109/TTE.2018.2870971
  28. Law, K. K., Cheng, K. W. E., Yeung, Y. P. B.: Design and analysis of switched-capacitor-based step-up resonant converters. IEEE Trans. Circ. Syst. I Reg. Pap. 52(5):943-948 (2005). https://doi.org/10.1109/TCSI.2004.840482
  29. Sano, K., Fujita, H.: Performance of a high-efficiency switched-capacitor-based resonant converter with phase-shift control. IEEE Trans. Power Electron. 26(2), 344-254 (2011) https://doi.org/10.1109/TPEL.2010.2062537
  30. Ye, Y., Cheng, K.W.E., Yeung, Y.P.B.: Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string. IEEE Trans. Power Electron. 27(7), 3234-3242 (2012) https://doi.org/10.1109/TPEL.2011.2181868
  31. Ye, Y., Cheng, K.W.E.: Analysis and design of zero-current switching switched-capacitor cell balancing circuit for series-connected battery/supercapacitor. IEEE Trans. Veh. Technol. 67(2), 948-955 (2018) https://doi.org/10.1109/tvt.2017.2749238
  32. Zhou, G., Zhang, X., Gao, K., Tian, Q., Xu, S.: Two-mode active balancing circuit based on switched-capacitor and three-resonant-state LC Units for series-connected cell strings. IEEE Trans. Ind. Electron. https://doi.org/10.1109/TIE.2021.3088359