DOI QR코드

DOI QR Code

Extendable space-type switched-capacitor multilevel inverter with fault-tolerant capability

  • Wang, Yaoqiang (School of Electrical Engineering, Zhengzhou University) ;
  • Zhang, Hengtai (School of Electrical Engineering, Zhengzhou University) ;
  • Lai, Jinmu (School of Electrical Engineering, Zhengzhou University) ;
  • Wang, Kewen (School of Electrical Engineering, Zhengzhou University) ;
  • Liang, Jun (School of Electrical Engineering, Zhengzhou University)
  • Received : 2021.08.20
  • Accepted : 2022.03.06
  • Published : 2022.06.20

Abstract

Low reliability is one of the main concerns in terms of multilevel inverters (MLI) due to the presence of a large number of switches and capacitors. Therefore, the fault-tolerant operation of MLIs has recently gained a great deal of attention. An extendable space-type switched-capacitor MLI topology with fault-tolerant characteristics is proposed in this paper. The proposed inverter employs a single direct-current voltage source and three capacitors to output staircase voltage levels with low distortion. The proposed topology is capable of tolerating open-circuit faults due to the separated charging paths of the inverter. Under pre-fault and post-fault operations, it preserves capacitor voltage balancing, voltage boost capability, as well as the ability to supply inductive loads. Furthermore, the voltage stresses of the switches and the voltage ripples of the capacitors are decreased or remain under post-fault operations. The proposed topology has been validated with a laboratory prototype in both dynamic and steady-state operations.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 51507155, in part by the Youth Key Teacher Project of Henan Universities under Grant 2019GGJS011, and in part by the Scientific and Technological Research Project of Henan Province under Grant 222102520001.

References

  1. Lin, W., Zeng, J., Hu, J., Liu, J.: Hybrid nine-level boost inverter with simplified control and reduced active devices. IEEE Trans. Emerg. Sel. Topics Power Electron. 9(2), 2038-2050 (2021) https://doi.org/10.1109/JESTPE.2020.2983205
  2. Khodaparast, A., Hassani, M.J., Azimi, E., Adabi, M.E., Adabi, J., Pouresmaeil, E.: Circuit configuration and modulation of a seven-level switched-capacitor inverter. IEEE Trans. Power Electron. 36(6), 7087-7096 (2021) https://doi.org/10.1109/TPEL.2020.3036351
  3. Chen, M., Yang, Y., Loh, P.C., Blaabjerg, F.: A single-source nine-level boost inverter with a low switch count. IEEE Trans. Ind. Electron. 69(3), 2644-2658 (2022)
  4. Meraj, S.T., Hasan, K., Masaoud, A.: A novel configuration of cross-switched t-type (CT-Type) multilevel inverter. IEEE Trans. Power Electron. 35(4), 3688-3696 (2020) https://doi.org/10.1109/tpel.2019.2935612
  5. Roy, T., Tesfay, M.W., Nayak, B., Panigrahi, C.K.: A 7-level switched capacitor multilevel inverter with reduced switches and voltage stresses. IEEE Trans. Circuits Syst. II Express Briefs 68(12), 3587-3591 (2021) https://doi.org/10.1109/TCSII.2021.3078903
  6. Wang, Y., Yuan, Y., Li, G., Ye, Y., Wang, K., Liang, J.: A T-type switched-capacitor multilevel inverter with low voltage stress and self-balancing. IEEE Trans. Circuits Syst. I Regul Paper 68(5), 2257-22709 (2021) https://doi.org/10.1109/TCSI.2021.3060284
  7. Ye, Y., Chen, S., Zhang, X., Yi, Y.: Half-bridge modular switched-capacitor multilevel inverter with hybrid pulsewidth modulation. IEEE Trans. Power Electron. 35(8), 8237-8247 (2020) https://doi.org/10.1109/tpel.2019.2963230
  8. Lee, S.S., Lim, C.S., Siwakoti, Y.P., Lee, K.: Dual-T-Type five-level cascaded multilevel inverter with double voltage boosting gain. IEEE Trans. Power Electron. 35(9), 9522-9529 (2020) https://doi.org/10.1109/TPEL.2020.2973666
  9. Anand, V., Singh, V.: A 13-level switched-capacitor multilevel inverter with single DC source. IEEE Trans. Emerg. Sel. Topics Power Electron (2021). https://doi.org/10.1109/JESTPE.2021.3077604
  10. Ye, Y., Cheng, K.W.E., Liu, J., Ding, K.: A step-up switched-capacitor multilevel inverter with self-voltage balancing. IEEE Trans. Ind. Electron. 61(12), 6672-6680 (2014) https://doi.org/10.1109/TIE.2014.2314052
  11. Panda, K.P., Bana, P.R., Kiselychnyk, O., Wang, J., Panda, G.: A single-source switched-capacitor-based step-up multilevel inverter with reduced components. IEEE Trans. Ind. Appl. 57(4), 3801-3811 (2021) https://doi.org/10.1109/TIA.2021.3068076
  12. Jahan, H.K., Abapour, M., Zare, K.: Switched-capacitor-based single-source cascaded H-bridge multilevel inverter featuring boosting ability. IEEE Trans. Power Electron. 34(2), 1113-1124 (2019) https://doi.org/10.1109/tpel.2018.2830401
  13. Taghvaie, A., Adabi, J., Rezanejad, M.: A self-balanced step-up multilevel inverter based on switched-capacitor structure. IEEE Trans. Power Electron. 33(1), 199-209 (2018) https://doi.org/10.1109/TPEL.2017.2669377
  14. Roy, T., Sadhu, P.K., Dasgupta, A.: Cross-switched multilevel inverter using novel switched capacitor converters. IEEE Trans. Ind. Electron. 66(11), 8521-8532 (2019) https://doi.org/10.1109/tie.2018.2889632
  15. Ramaiah, S., Lakshminarasamma, N., Mishra, M.K.: Multisource switched capacitor based boost multilevel inverter for photovoltaic-based systems. IEEE Trans. Power Electron. 35(3), 2558-2570 (2020) https://doi.org/10.1109/tpel.2019.2924649
  16. Samadaei, E., Kaviani, M., Bertilsson, K.: A 13-levels module (K-Type) with two dc sources for multilevel inverters. IEEE Trans. Ind. Electron. 66(7), 5186-5196 (2019) https://doi.org/10.1109/tie.2018.2868325
  17. Maddugari, S.K., Borghate, V.B., Sabyasachi, S., Karasani, R.R.: A linear-generator-based wave power plant model using reliable multilevel inverter. IEEE Trans. Ind. Appl. 55(3), 2964-2972 (2019) https://doi.org/10.1109/tia.2019.2900604
  18. Majumder, M.G., Rakesh, R., Gopakumar, K., Umanand, L., Al-Haddad, K., Jarzyna, W.: A fault-tolerant five-level inverter topology with reduced component count for OEIM drives. IEEE Trans. Emerg. Sel. Topics Power Electron. 9(1), 961-969 (2021) https://doi.org/10.1109/JESTPE.2020.2972056
  19. Zhang, W., Xu, D.: Fault analysis and fault-tolerant design for parallel redundant inverter systems in case of IGBT short-circuit failure. IEEE Trans. Emerg. Sel. Topics Power Electron. 6(4), 2031-2041 (2018) https://doi.org/10.1109/JESTPE.2018.2844092
  20. Farzamkia, S., Imaneini, H., Sadigh, A.K., Noushak, M.: A software-based fault-tolerant strategy for modular multilevel converter using DC bus voltage control. IEEE Trans. Emerg. Sel. Topics Power Electron. 9(3), 3436-3445 (2021) https://doi.org/10.1109/JESTPE.2020.3022984
  21. Xu, S., Sun, Z., Yao, C., Liu, K., Ma, G.: Open-switch fault-tolerant operation of T-type active neutral-point-clamped converter using level-shifted PWM. IEEE Trans. Circuits Syst. II Express Briefs. 68(7), 2598-2602 (2021) https://doi.org/10.1109/TCSII.2021.3061483
  22. Hinago, Y., Koizumi, H.: A switched-capacitor inverter using series/parallel conversion with inductive load. IEEE Trans. Ind. Electron. 59(2), 878-887 (2012) https://doi.org/10.1109/TIE.2011.2158768
  23. Chen, J., Wang, C., Li, J.: A single-phase step-up seven-level inverter with a simple implementation method for level-shifted modulation schemes. IEEE Access. 7, 146522-146565 (2019)
  24. Chappa, A., Gupta, S., Sahu, L.K., Gupta, K.K.: A fault-tolerant multilevel inverter topology with preserved output power and voltage levels under pre- and postfault operation. IEEE Trans. Ind. Electron. 68(7), 5756-5764 (2021) https://doi.org/10.1109/TIE.2020.2994880
  25. Mhiesan, H., Wei, Y., Siwakoti, Y.P., Mantooth, H.A.: A fault-tolerant hybrid cascaded h-bridge multilevel inverter. IEEE Trans. Power Electron. 35(12), 12702-12715 (2020) https://doi.org/10.1109/tpel.2020.2996097
  26. Jahan, H.K., Panahandeh, F., Abapour, M., Tohidi, S.: Reconfigurable multilevel inverter with fault-tolerant ability. IEEE Trans. Power Electron. 33(9), 7880-7893 (2018) https://doi.org/10.1109/tpel.2017.2773611
  27. Aly, M., Ahmed, E.M., Shoyama, M.: A new single-phase five-level inverter topology for single and multiple switches fault tolerance. IEEE Trans. Power Electron. 33(11), 9198-9208 (2018) https://doi.org/10.1109/tpel.2018.2792146
  28. Madhukar, R.A., Sivakumar, K.: A fault-tolerant single-phase fve-level inverter for grid-independent PV systems. IEEE Trans. Ind. Electron. 62(12), 7569-7577 (2015) https://doi.org/10.1109/TIE.2015.2455523
  29. Gautam, S.P., Kumar, L., Gupta, S., Agrawal, N.: A single-phase five-level inverter topology with switch fault-tolerance capabilities. IEEE Trans. Ind. Electron. 64(3), 2004-2014 (2017) https://doi.org/10.1109/TIE.2016.2626368
  30. Xie, Z., Chen, Y., Wu, W., Wang, Y., Gong, W., Guerrero, J.M.: Frequency coupling admittance modeling of quasi-PR controlled inverter and its stability comparative analysis under the weak grid. IEEE Access. 9, 94912-94922 (2021) https://doi.org/10.1109/ACCESS.2021.3093465