DOI QR코드

DOI QR Code

Phase lag compensation for improving the stability of LCL-type converters under weak grid condition

  • Wang, Jianfeng (Department of Transportation, Zhejiang Industry Polytechnic College) ;
  • Pan, Guobing (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Ouyang, Jing (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Liu, Chengyao (Department of Transportation, Zhejiang Industry Polytechnic College) ;
  • Zhou, Yinghao (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Fei, Gong (College of Mechanical Engineering, Zhejiang University of Technology)
  • 투고 : 2021.09.06
  • 심사 : 2022.01.28
  • 발행 : 2022.05.20

초록

LCL-type converters are widely used in the sustainable energy generation system due to their flexible current control strategies and high efficiency. The LCL filter has a resonance peak, which needs to be handled appropriately; otherwise, it causes system instability. Single-loop feedback control strategy is very popular at present; it does not require additional sensors to measure the state variables for active damping. Under weak grid condition, the resonance peak of LCL filter shifts to the left evidently and greatly reduces the stability margin; thus, maintaining the stability of single-loop control is a challenging task. This paper presents an improved grid current feedback (GCF) single-loop control strategy, which is designed to raise the stability margin of system to adapt weak grid condition. Low pass filter controller is used for phase lag compensation. A phase margin design method is proposed to ensure system stability, and the corresponding discrete method in z-domain has been proposed in detail. Experiments performed on a three-phase converter platform are finally presented to verify the effectiveness of the proposed phase lag compensation for GCF control strategy.

키워드

과제정보

This research is supported by the Scientific Research Project of Zhejiang Provincial Education Department (Grant number Y201941495), Basic Public Welfare Research Program of Zhejiang Province (Grant number LGF21E070001).

참고문헌

  1. Gui, Y.H., Wang, X.F., Wu, H., Blaabjerg, F.: Voltage modulated direct power control for a weak grid-connected voltage source inverters. IEEE Trans. Power Electron. 34(11), 11383-11395 (2019) https://doi.org/10.1109/tpel.2019.2898268
  2. Khazaei, J., Beza, M., Bongiorno, M.: Impedance analysis of modular multi-level converters connected to weak AC grids. IEEE Trans. Power Syst. 32(4), 4015-4025 (2018) https://doi.org/10.1109/TPWRS.2017.2779403
  3. Zhao, M.Q., Yuan, X.M., Hu, J.B., Yan, Y.B.: Voltage dynamics of current control time-scale in a VSC-connected weak grid. IEEE Trans. Power Syst. 32(4), 2925-2937 (2016) https://doi.org/10.1109/TPWRS.2015.2482605
  4. Wen, B., Dong, D., Boroyevich, D., Mattavelli, P., Burgos, R., Shen, Z.: Impedance-based analysis of grid-synchronization stability for three phase paralleled converters. IEEE Trans. Power Electron. 31(1), 26-38 (2016) https://doi.org/10.1109/TPEL.2015.2419712
  5. Wang, X.F., Blaabjerg, F., Loh, P.C.: Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL flters. IEEE Trans. Power Electron. 32(11), 8922-8935 (2017) https://doi.org/10.1109/TPEL.2017.2651948
  6. Geng, Y.W., Qi, Y.W., Zheng, P.F., Guo, F., Gao, X.: A virtual RLC active damping method for LCL-type grid-connected inverters. J. Power Electr. 18(5), 1555-1566 (2018) https://doi.org/10.6113/JPE.2018.18.5.1555
  7. Wang, X.H., Ruan, X.B., Liu, S.W., Tes, C.K.: Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics. IEEE Trans. Power Electron. 25(12), 3119-3127 (2010) https://doi.org/10.1109/TPEL.2010.2077312
  8. Han, Y., Li, Z.P., Yang, P., Wang, C.L., Xu, L., Guerrero, J.M.: Analysis and design of improved weighted average current control strategy for LCL-type grid-connected inverters. IEEE Trans. Energy Convers. 32(3), 941-952 (2017) https://doi.org/10.1109/TEC.2017.2669031
  9. Zhang, Y., Xue, M.Y., Li, M.Y., Kang, Y., Guerrero, J.M.: Codesign of the LCL filter and control for grid-connected inverters. J. Power Electron. 14(5), 1047-1056 (2014) https://doi.org/10.6113/JPE.2014.14.5.1047
  10. Jia, L., Ruan, X.B., Zhao, W.X., Lin, Z.H., Wang, X.H.: An adaptive active damper for improving the stability of grid-connected inverters under weak grid. IEEE Trans. Power Electron. 32(11), 9561-9574 (2018)
  11. Chen, C., Xiong, J., Zhang, K.: An active damping scheme based on a second order resonant integrator for LCL-type grid-connected converters. J. Power Electron. 17(4), 1058-1070 (2017) https://doi.org/10.6113/JPE.2017.17.4.1058
  12. Bao, C.L., Ruan, X.B., Wang, X.H., Li, W.W., Pan, D.H., Weng, K.L.: Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping. IEEE Trans. Power Electron. 29(3), 1239-1253 (2013) https://doi.org/10.1109/TPEL.2013.2262378
  13. Ma, W.J., Guan, Y.P., Zhang, B., Wu, L.H.: Active disturbance rejection control based single current feedback resonance damping strategy for LCL-type grid-connected inverter. IEEE Trans. Energy Convers. 36(1), 48-62 (2021) https://doi.org/10.1109/TEC.2020.3006151
  14. Wang, J.G., Yan, J.D., Jiang, L., Zou, J.Y.: Delay-dependent stability of single-loop controlled grid-connected inverters with LCL flters. IEEE Trans. Power Electron. 31(1), 743-757 (2015) https://doi.org/10.1109/TPEL.2015.2401612
  15. Zhen, X., Wang, X.F., Loh, P.C., Blaabjerg, F.: Grid-current-feedback control for LCL-filtered grid converters with enhanced stability. IEEE Trans. Power Electron. 32(4), 3216-3228 (2017) https://doi.org/10.1109/TPEL.2016.2580543
  16. Li, X.Q., Fang, J.Y., Tang, Y., Wu, X.J.: Robust design of LCL filters for single-current- loop controlled grid-connected power converters with unit PCC voltage feedforward. IEEE J. Emerg. Sel. Top. Power Electron. 6(1), 54-72 (2018) https://doi.org/10.1109/jestpe.2017.2766672
  17. Yang, L., Yang, J.Q.: A robust dual-loop current control method with a delay-compensation control link for LCL-type shunt active power flters. IEEE Trans. Power Electron. 34(7), 6183-6199 (2018) https://doi.org/10.1109/tpel.2018.2865813
  18. Javier, R.P., Bueno, E.J., Rafael, P.A., Alberto, R.C.: All-pass-filter-based active damping for VSCs with LCL filters connected to weak grids. IEEE Trans. Power Electron. 33(11), 9890-9901 (2018) https://doi.org/10.1109/tpel.2017.2789218
  19. Fang, J.Y., Li, X.Q., Yang, X., Tang, Y.: An integrated trap-LCL filter with reduced current harmonics for grid-connected converters under weak grid conditions. IEEE Trans. Power Electron. 32(11), 8446-8457 (2017) https://doi.org/10.1109/TPEL.2017.2651152
  20. Mortazavian, S., Mohamed, A.R.I.: Dynamic analysis and improved LVRT performance of multiple dg units equipped with grid-support functions under unbalanced faults and weak grid conditions. IEEE Trans. Power Electron. 33(10), 9017-9032 (2018) https://doi.org/10.1109/tpel.2017.2784435
  21. Yang, D.S., Ruan, X.B., Wu, H.: Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition. IEEE Trans. Power Electron. 29(11), 5795-5805 (2014) https://doi.org/10.1109/TPEL.2014.2300235
  22. Ling, F., Wang, Y.: Modeling and resonance control of modular three-level shunt active power filter. IEEE Trans. Ind. Electron. 64(9), 7478-7486 (2017) https://doi.org/10.1109/TIE.2017.2696484
  23. Yao, W.L., Yang, Y.H., Zhang, X.B., Blaabjerg, F., Loh, P.C.: Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Trans. Power Electron. 32(3), 2360-2375 (2017) https://doi.org/10.1109/TPEL.2016.2565598
  24. Wang, J.F., Xu, F., Pan, G.B., Ouyang, K., Jin, Y.J., Jin, L.B., Qiu, J.: Robust control method for LCL-type shunt active power filter under weak grid condition. IET Gener. Transm. Distrib. 14(11), 2120-2128 (2020) https://doi.org/10.1049/iet-gtd.2019.1381
  25. Briz, F., Garcia, P., Degner, M.W., Diaz-Reigosa, D., Guerrero, J.M.: Dynamic behavior of current controllers for selective harmonic compensation in three-phase active power filters. IEEE Trans. Ind. Appl. 49(3), 1411-1420 (2013) https://doi.org/10.1109/TIA.2013.2253537