Acknowledgement
This work is supported by the Artificial Intelligence Technology Project of the Xi'an Science and Technology Bureau (No. 21RGZN0014). To the best of our knowledge, no conflict of interest, financial or others, exists. We have included acknowledgments, conflicts of interest, and funding sources after the discussion.
References
- Yang, B., Wang, J., Cao, P., Zhu, T., Shu, H., Chen, J., et al.: Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: a critical comprehensive survey. J. Energy Storage. 39, 102572 (2021) https://doi.org/10.1016/j.est.2021.102572
- Fleischer, C., Waag, W., Heyn, H.M., Sauer, D.U.: On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 1. Requirements, critical review of methods and modeling. J. Power. Sources. 260, 276-291 (2014) https://doi.org/10.1016/j.jpowsour.2014.01.129
- Yang, Z., Patil, D., Fahimi, B.: Electrothermal modeling of lithium-ion batteries for electric vehicles. IEEE Trans. Veh. Technol. 68(1), 170-179 (2018) https://doi.org/10.1109/TVT.2018.2880138
- Ningrum, P., Windarko, N.A., Suhariningsih, S.: Estimation of state of charge (SoC) using modified coulomb counting method with open circuit compensation for battery management system (BMS). JAREE (2021). https://doi.org/10.12962/jaree.v5i1.150
- Tian, J., Xiong, R., Shen, W., Lu, J.: State-of-charge estimation of LiFePO4 batteries in electric vehicles: a deep-learning enabled approach. App. Energy. 291, 116812 (2021) https://doi.org/10.1016/j.apenergy.2021.116812
- Ren, X., Liu, S., Yu, X., Dong, X.: A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 234, 121236 (2021) https://doi.org/10.1016/j.energy.2021.121236
- Xing, Y.J., He, W., Pecht, M., Tsui, K.L.: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 113, 106-115 (2014) https://doi.org/10.1016/j.apenergy.2013.07.008
- Zhang, S., Zhang, X.: A novel non-experiment-based reconstruction method for the relationship between open-circuit-voltage and state-of-charge/state-of-energy of lithium-ion battery. Electrochim. Acta 403, 139637 (2022) https://doi.org/10.1016/j.electacta.2021.139637
- Guo, Y., Yang, Z., Liu, K., Zhang, Y., Feng, W.: A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system. Energy 219, 119529 (2021) https://doi.org/10.1016/j.energy.2020.119529
- Li, S., Ju, C., Li, J., Fang, R., Tao, Z., Li, B., Zhang, T.: State-of-charge estimation of lithium-ion batteries in the battery degradation process based on recurrent neural network. Energies 14(2), 306 (2021) https://doi.org/10.3390/en14020306
- Chandran, V., Kpatil, C., Karthick, A., Ganeshaperumal, D., Rahim, R., Ghosh, A.: State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Electr. Veh. J. 12(1), 38 (2021) https://doi.org/10.3390/wevj12010038
- Liu, X.T., Chen, Z.H., Zhang, C.B., Wu, J.: A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation. Appl. Energy 123, 263-272 (2014) https://doi.org/10.1016/j.apenergy.2014.02.072
- Wang, Y.J., Zhang, C.B., Chen, Z.H.: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries. Appl. Energy 135, 81-87 (2014) https://doi.org/10.1016/j.apenergy.2014.08.081
- Wang, Y.J., Chen, Z.H.: A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. Appl. Energy 260, 114324 (2020) https://doi.org/10.1016/j.apenergy.2019.114324
- Wei, Z.B., Meng, S.J., Xiong, B.Y., Ji, D.X., et al.: Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer. Appl. Energy 181, 332-341 (2016) https://doi.org/10.1016/j.apenergy.2016.08.103
- Pang, H., Mou, L.J., Guo, L.: Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures. Chin. Phys. B 28(10), 566-574 (2019)
- Sun, D., Yu, X., Wang, C., Zhang, C., Huang, R., et al.: State of charge estimation for lithium-ion battery based on an intelligent adaptive extended kalman filter with improved noise estimator. Energy 214, 119025 (2021) https://doi.org/10.1016/j.energy.2020.119025
- Sturm, J., Ennifar, H., Erhard, S.V., Rheinfeld, A., Kosch, S., Jossen, A.: State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter. Appl. Energy 223, 103-123 (2018) https://doi.org/10.1016/j.apenergy.2018.04.011
- Peng, N., Zhang, S., Guo, X., Zhang, X.: Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter. Int. J. Energy Res. 45(1), 975-990 (2021) https://doi.org/10.1002/er.6088
- Meng, W.E.I., Jiabo, L.I., Zhongyu, L.I., Min, Y.E., Xinxin, X.U.: SOC estimation of Li-ion batteries based on Gaussian process regression and UKF. Energy Storage Sci. Technol. 9(4), 1206 (2020)
- Fan, C.L.: Estimation of lithium battery SOC based on improved particle filter. Res. Exploration Lab. 37(01), 134-138 (2018)
- Xia, B.Z., Sun, Z., Zhang, R.F., et al.: A comparative study of three improved algorithms based on particle filter algorithms in SOC estimation of lithium-ion batteries. Energies 10(8), 1149 (2017) https://doi.org/10.3390/en10081149
- Li, W.L., Liang, L.L.Y., Liu, W.J., Wu, X.H.: State of charge estimation of lithium-ion batteries using a discrete-time nonlinear observer. IEEE Trans. Industr. Electron.64(11), 8557-8565 (2017) https://doi.org/10.1109/TIE.2017.2703685
- Liu, Z., Wang, C., Guo, X., Cheng, S., Gao, Y., Wang, R., et al.: Thermal characteristics of ultrahigh power density lithium-ion battery. J. Power Sour. 506, 230205 (2021) https://doi.org/10.1016/j.jpowsour.2021.230205
- Zhong, L., Zhang, C.B., He, Y., Chen, Z.H.: A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis. Appl. Energy 113, 558-564 (2014) https://doi.org/10.1016/j.apenergy.2013.08.008
- Wei, Z.B., Hu, J., He, H.W., Li, Y., Xiong, B.Y.: Load current and state-of-charge co-estimation for current sensor-free lithium-ion battery. IEEE Trans. Power Electron. 36(10), 10970-10975 (2021) https://doi.org/10.1109/TPEL.2021.3068725