DOI QR코드

DOI QR Code

Online condition monitoring for DC-link capacitors of motor drives under noise interference

  • Zhu, Qi (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Zhao, Jin (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Song, Yujin (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Zhou, Yang (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Sun, Jiajiang (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology)
  • Received : 2021.12.19
  • Accepted : 2022.03.30
  • Published : 2022.07.20

Abstract

In this paper, a capacitance estimation method based on the recursive least squares (RLS) algorithm is proposed for the condition monitoring of the dc-link capacitors in motor drive systems. When a system is operating in the regenerative mode, the capacitance can be estimated online without the need for hardware modifications. The ratio of the current integral to the voltage increase is used to estimate the capacitance. In addition, the influences of the dead-time and pulse dropping on calculating current integral are analyzed. To deal with noise interference in voltage measurement, the RLS algorithm with outlier detection is used to achieve robust capacitance estimation. In view of the limited amount of data in the regenerative mode, the standard deviation of the error was estimated and a reasonable threshold was set according to the accuracy requirement to remove a part of the estimated value with a large error, which improves the reliability of the estimated results. Simulation and experimental results show the effectiveness of this method.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation (NNSF) of China under Grants 62073147 and 61573159, and the Key Area R&D Program of Guang-Dong Province (2019B090911001).

References

  1. Wang, H., Liserre, M., et al.: Toward reliable power electronics: challenges, design tools, and opportunities. IEEE Ind. Electron. Mag. 7(2), 17-26 (2013) https://doi.org/10.1109/MIE.2013.2252958
  2. Wang, H., Blaabjerg, F.: Reliability of capacitors for DC-link applications in power electronic converters-an overview. IEEE Trans. Ind. Appl. 59(5), 3569-3578 (2014) https://doi.org/10.1109/TIA.2014.2308357
  3. Soliman, H., Wang, H., Blaabjerg, F.: A review of the condition monitoring of capacitors in power electronic converters. IEEE Trans. Ind. Appl. 52(6), 4976-4989 (2016) https://doi.org/10.1109/TIA.2016.2591906
  4. Prasanth, S., Halick, M., Firman, S., et al.: Online condition monitoring system for DC-link capacitor in industrial power converters. IEEE Trans. Ind. Appl. 54(5), 4775-4785 (2018) https://doi.org/10.1109/tia.2018.2845889
  5. Prasanth, S., Halick, M., Sathik, M., et al: Condition monitoring of electrolytic capacitor based on ESR estimation and thermal impedance model using Improved power loss computation. Proc. International Conference on Power Electronics, 416-421 (2018)
  6. Hasegawa, K., Nishizawa, S.: Omura, I: ESR and capacitance monitoring of a dc-link capacitor used in a three-phase PWM inverter with a front-end diode rectifier. Microelectron. Reliab. 88-90, 433-437 (2018) https://doi.org/10.1016/j.microrel.2018.07.023
  7. Sundararajan, P., Sathik, M., Sasongko, F., et al.: Condition monitoring of DC-link capacitors using Goertzel algorithm for failure precursor parameter and temperature estimation. IEEE Trans. Power Electron. 35(6), 6386-6396 (2020) https://doi.org/10.1109/tpel.2019.2951859
  8. Shu, C., Chang, L., Shengxian, X., et al: An on-line capacitor state identification method based on improved RLS. Transport. Safety Environ. 3(3), 1-13 (2021) https://doi.org/10.1093/tse/tdaa024
  9. Yu, W., Xiong, D.: A VEN condition monitoring method of DC-link capacitors for power converters. IEEE Trans. Ind. Electron. 66(2), 1296-1306 (2019) https://doi.org/10.1109/tie.2018.2835393
  10. Soliman, H. A., Wang, H., Davari, P., et al: Capacitance Estimation Algorithm based on DC-Link Voltage Harmonics Using ANN in Three-Phase Motor Drive Systems. Proc. IEEE Energy Conversion Congress and Exposition, 5795-5802 (2017)
  11. Soliman, H. A., Blaabjerg, F., Wang, H., et al: Artificial Neural Network based DC-link Capacitance Estimation in a Diode-bridge Front-end Inverter System. Proc. IEEE International Future Energy Electronics Conference, 196-201 (2017)
  12. Abo-Khalil, A.G., Al-Qawasmi, A.R., Eltamaly, A.M., et al.: Condition monitoring of DC-link electrolytic capacitors in PWM power converters using OBL method. Sustainability 12(9), 3719 (2020) https://doi.org/10.3390/su12093719
  13. Yao, F., Dong, C., Tang, S., et al.: Parameter identification of DC-ink capacitor for electric vehicle based on IGWO-BP neural network. IEEJ Trans. Electr. Electron. Eng. 16(6), 861-870 (2021) https://doi.org/10.1002/tee.23373
  14. Blanco, C., Garcia, P., Gomez-Aleixandre, C., et al: Online parameter estimator of the DC bus capacitor bank for Doubly-Fed Induction Generators. Proc. 2019 21st European Conference on Power Electronics and Applications, (2019).
  15. Meng, T., Zhang, P., Abdelsalam, I.: A Novel Non-invasive DC-link Capacitance Estimation Method for Motor Drive System. Proc. 2020 IEEE 9th International Power Electronics and Motion Control Conference, 927-934 (2020)
  16. Nguyen, T.H., Lee, D.C.: Deterioration monitoring of DC-link capacitors in AC machine drives by current injection. IEEE Trans. Power Electron. 30(3), 1126-1130 (2015) https://doi.org/10.1109/TPEL.2014.2339374
  17. Abo-Khalil, A.G.: Current injection-based DC-link capacitance estimation using support vector regression. IET Power Electron. 5(1), 53-58 (2011) https://doi.org/10.1049/iet-pel.2010.0310
  18. Pu, X.S., Nguyen, T.H., Lee, D.C., et al.: Fault diagnosis of DC-Link capacitors in three-phase AC/DC PWM converters by online estimation of equivalent series resistance. IEEE Trans. Ind. Electron. 60(9), 4118-4127 (2013) https://doi.org/10.1109/TIE.2012.2218561
  19. Lee, J., Jo, H., Cha, H.: A new capacitance estimation method of supercapacitor bank using a bank impedance and current injection. Proc. 2016 IEEE Applied Power Electronics Conference and Exposition, 511-515 (2016)
  20. Zhou, W., Wang, M., Wu, Q., et al.: Online Monitoring Method for a DC-Link Capacitor in an AC/DC/AC Converter. Proc. 2019 IEEE Energy Conversion Congress and Exposition, 2953-2956 (2019)
  21. Zhou, W., Wang, M., Wu, Q.: A model-based monitoring method for offline accelerated testing of DC-link capacitor in three-phase inverter systems. IEEE Trans. Power Electron. 36(1), 61-67 (2021) https://doi.org/10.1109/tpel.2020.3005034
  22. Li, T., Chen, J., Cong, P., et al.: Online condition monitoring of DC-link capacitor for AC/DC/AC PWM converter. IEEE Trans. Power Electron. 37(1), 865-878 (2022) https://doi.org/10.1109/TPEL.2021.3092429
  23. Sang, B.L., Yang, J., Hong, J., et al.: A new strategy for condition monitoring of adjustable speed induction machine drive systems. IEEE Trans. Power Electron. 26(2), 389-398 (2009) https://doi.org/10.1109/TPEL.2010.2062200
  24. Zhu, B., Xiao, D., Tan, C., et al.: Fault Tolerant Online Condition Monitor of DC-Link Capacitor for Open-end Winding Machine. Proc. 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 4623-4629 (2019)
  25. Moon, J. J., Im, W. S., Kim, J. M.: Capacitance estimation of DC-link capacitor in brushless DC motor drive systems. Proc. 2013 IEEE ECCE Asia Downunder (2013)
  26. Sun, P., Gong, C., Du, X., et al.: Online condition monitoring for both IGBT module and DC-link capacitor of power converter based on short-circuit current simultaneously. IEEE Trans. Ind. Electron. 64(5), 3662-3671 (2017) https://doi.org/10.1109/TIE.2017.2652372
  27. Li, H., Xiang, D., Han, X., et al.: High-accuracy capacitance monitoring of DC-link capacitor in VSI systems by LC resonance. IEEE Trans. Power Electron. 34(12), 12200-12211 (2019) https://doi.org/10.1109/tpel.2019.2904551
  28. Capolino, G., Antonino-Daviu, J.A., Riera-Guasp, M.: Modern diagnostics techniques for electrical machines, power electronics, and drives. IEEE Trans. Ind. Electron. 62(3), 1738-1745 (2015) https://doi.org/10.1109/TIE.2015.2391186
  29. Jan, S.U., Lee, Y.D., Shin, J., et al.: Sensor fault classification based on support vector machine and statistical time-domain features. IEEE Access. 5, 8682-8690 (2017) https://doi.org/10.1109/ACCESS.2017.2705644
  30. Zhao, Z., Davari, P., Lu, W.G., et al.: An overview of condition monitoring techniques for capacitors in DC-link applications. IEEE Trans. Power Electron. 36(4), 3692-3716 (2021) https://doi.org/10.1109/TPEL.2020.3023469
  31. Choi, J.W., Sul, S.K.: Seung-Ki: Inverter output voltage synthesis using novel dead time compensation. IEEE Trans. Power Electron. 11(2), 221-227 (1996) https://doi.org/10.1109/63.486169
  32. Zhou, B., Lau, W. H., Chung, H.: The analysis of a novel deadtime generation and compensation method for 2-level PWM topology. Proc. IEEE Power Electronics Specialist Conference, (2006)
  33. Astrom, K. J.: Lectures on the identification problem: The least squares method. (1968).