DOI QR코드

DOI QR Code

Indirect MPC method with improved output voltage and current waveforms for MMCs

  • Nguyen, Minh‑Hoang (School of Electrical and Electronics Engineering, ChungAng University) ;
  • Kwak, Sangshin (School of Electrical and Electronics Engineering, ChungAng University) ;
  • Choi, Seungdeog (Department of Electrical and Computer Engineering, Mississippi State University)
  • Received : 2021.10.26
  • Accepted : 2022.01.12
  • Published : 2022.04.20

Abstract

This paper focuses on a nonrequired weighting factor tuning task model predictive control (MPC) approach with improved steady-state performance, resulting in better harmonic distortion in output current and voltage for a single-phase modular multilevel converter (MMC) system. For the proposed indirect MPC technique, two independent control stages are designed to achieve various control objectives at once without the use of weighting factors. The first stage includes a single cost function, only related to the output current to generate a temporary quantity of inserted submodules (SMs). A circulating current regulation using predicted value is proposed to obtain the total quantity of inserted SMs regarding the circulating current suppression. The final quantity of inserted SMs is adjusted and generated from the temporary quantity to be used in a voltage sorting algorithm. Without the use of weighting factors, the control objectives in the MMC system can be achieved using the proposed indirect MPC. The output current and voltage have a considerable improvement over that of the conventional indirect MPC. The simulation and experimental outcomes validate that the proposed approach is correct and feasible.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea grant funded by the Korean government (2020R1A2C1013413) and the Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea (No. 20214000000280).

References

  1. Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: 2003 IEEE bologna power tech conference proceedings, vol. 3, pp. 272-277 (IEEE, 2003)
  2. Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57, 2197-2206 (2010) https://doi.org/10.1109/TIE.2009.2030767
  3. Perez, M.A., Bernet, S., Rodriguez, J., Kouro, S., Lizana, R.: Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans. Power Electron. 30, 4-17 (2015) https://doi.org/10.1109/TPEL.2014.2310127
  4. Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., Barbosa, P.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30, 37-53 (2015) https://doi.org/10.1109/TPEL.2014.2309937
  5. Nami, A., Liang, J., Dijkhuizen, F., Demetriades, G.D.: Modular multilevel converters for HVDC applications: review on converter cells and functionalities. IEEE Trans. Power Electron. 30, 18-36 (2015) https://doi.org/10.1109/TPEL.2014.2327641
  6. Lizana, R., Perez, M.A., Arancibia, D., Espinoza, J.R., Rodriguez, J.: Decoupled current model and control of modular multilevel converters. IEEE Trans. Ind. Electron. 62, 5382-5392 (2015) https://doi.org/10.1109/TIE.2015.2405900
  7. Hagiwara, M., Akagi, H.: Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Trans. Power Electron. 24, 1737-1746 (2009) https://doi.org/10.1109/tpel.2009.2014236
  8. Vasiladiotis, M., Cherix, N., Rufer, A.: Accurate capacitor voltage ripple estimation and current control considerations for grid-connected modular multilevel converters. IEEE Trans. Power Electron. 29, 4568-4579 (2014) https://doi.org/10.1109/TPEL.2013.2286293
  9. Li, B., et al.: Analysis of the phase-shifted carrier modulation for modular multilevel converters. IEEE Trans. Power Electron. 30, 297-310 (2015) https://doi.org/10.1109/TPEL.2014.2299802
  10. Deng, F., Chen, Z.: Voltage-balancing method for modular multilevel converters under phase-shifted carrier-based pulsewidth modulation. IEEE Trans. Ind. Electron. 62, 4158-4169 (2015) https://doi.org/10.1109/TIE.2014.2388195
  11. Nguyen, M.H., Kwak, S., Kim, T.: Phase-shifted carrier pulsewidth modulation algorithm with improved dynamic performance for modular multilevel converters. IEEE Access 7, 170949-170960 (2019) https://doi.org/10.1109/access.2019.2955714
  12. Darus, R., Pou, J., Konstantinou, G., Ceballos, S., Agelidis, V.G.: Circulating current control and evaluation of carrier dispositions in modular multilevel converters. In: 2013 IEEE ECCE Asia downunder, pp. 332-338 (IEEE, 2013)
  13. Mei, J., Shen, K., Xiao, B., Tolbert, L.M., Zheng, J.: A new selective loop bias mapping phase disposition PWM with dynamic voltage balance capability for modular multilevel converter. IEEE Trans. Ind. Electron. 61, 798-807 (2014) https://doi.org/10.1109/TIE.2013.2253069
  14. Bocker, J., Freudenberg, B., The, A., Dieckerhof, S.: Experimental comparison of model predictive control and cascaded control of the modular multilevel converter. IEEE Trans. Power Electron. 30, 422-430 (2015) https://doi.org/10.1109/TPEL.2014.2309438
  15. Kouro, S., Bernal, R., Miranda, H., Silva, C.A., Rodriguez, J.: High-performance torque and fux control for multilevel inverter fed induction motors. IEEE Trans. Power Electron. 22, 2116-2123 (2007) https://doi.org/10.1109/TPEL.2007.909189
  16. Tu, Q., Xu, Z.: Impact of sampling frequency on harmonic distortion for modular multilevel converter. IEEE Trans. Power Deliv. 26, 298-306 (2011) https://doi.org/10.1109/TPWRD.2010.2078837
  17. Hu, P., Jiang, D.: A level-increased nearest level modulation method for modular multilevel converters. IEEE Trans. Power Electron. 30, 1836-1842 (2015) https://doi.org/10.1109/TPEL.2014.2325875
  18. Lin, L., et al.: Improved nearest-level modulation for a modular multilevel converter with a lower submodule number. IEEE Trans. Power Electron. 31, 5369-5377 (2016) https://doi.org/10.1109/TPEL.2016.2521059
  19. Nguyen, M.H., Kwak, S.: Nearest-level control method with improved output quality for modular multilevel converters. IEEE Access 8, 110237-110250 (2020) https://doi.org/10.1109/access.2020.3001587
  20. Nguyen, M.H., Kwak, S.: Predictive nearest-level control algorithm for modular multilevel converters with reduced harmonic distortion. IEEE Access 9, 4769-4783 (2021) https://doi.org/10.1109/ACCESS.2020.3048156
  21. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56, 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  22. Qin, J., Saeedifard, M.: Predictive control of a modular multilevel converter for a back-to-back HVDC system. IEEE Trans. Power Deliv. 27, 1538-1547 (2012) https://doi.org/10.1109/TPWRD.2012.2191577
  23. Vatani, M., Bahrani, B., Saeedifard, M., Hovd, M.: Indirect finite control set model predictive control of modular multilevel converters. IEEE Trans. Smart Grid 6, 1520-1529 (2015) https://doi.org/10.1109/TSG.2014.2377112
  24. Gong, Z., Dai, P., Yuan, X., Wu, X., Guo, G.: Design and experimental evaluation of fast model predictive control for modular multilevel converters. IEEE Trans. Ind. Electron. 63, 3845-3856 (2016) https://doi.org/10.1109/TIE.2015.2497254
  25. Rashwan, A., Sayed, M.A., Mobarak, Y.A., Shabib, G., Senjyu, T.: Predictive controller based on switching state grouping for a modular multilevel converter with reduced computational time. IEEE Trans. Power Deliv. 32, 2189-2198 (2017) https://doi.org/10.1109/TPWRD.2016.2639529
  26. Zhang, F., Li, W., Joos, G.: A voltage level based model predictive control of modular multilevel converter. IEEE Trans. Ind. Electron. 63, 5301-5312 (2016) https://doi.org/10.1109/TIE.2016.2572671
  27. Nguyen, M.H., Kwak, S.: Improved indirect model predictive control for enhancing dynamic performance of modular multilevel converter. Electronics 9, 1405 (2020) https://doi.org/10.3390/electronics9091405
  28. Gutierrez, B., Kwak, S.-S.: Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden. IEEE Trans. Power Electron. 33, 9176-9187 (2018) https://doi.org/10.1109/tpel.2018.2789455
  29. Nguyen, M.H., Kwak, S.: Simplified indirect model predictive control method for a modular multilevel converter. IEEE Access 6, 62405-62418 (2018) https://doi.org/10.1109/access.2018.2876505
  30. Vazquez, S., et al.: Model predictive control: a review of its applications in power electronics. EEE Ind. Electron. Mag. 8, 16-31 (2014) https://doi.org/10.1109/MIE.2013.2290138
  31. Moon, J.-W., Gwon, J.-S., Park, J.-W., Kang, D.-W., Kim, J.-M.: Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system. IEEE Trans. Power Deliv. 30, 608-617 (2015) https://doi.org/10.1109/TPWRD.2014.2303172
  32. Liu, P., Wang, Y., Cong, W., Lei, W.: Grouping-sorting-optimized model predictive control for modular multilevel converter with reduced computational load. IEEE Trans. Power Electron. 31, 1896-1907 (2016) https://doi.org/10.1109/TPEL.2015.2432767
  33. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Deliv. 33, 2115-2124 (2018) https://doi.org/10.1109/tpwrd.2017.2727478
  34. Wang, J., et al.: Modulated model predictive control for modular multilevel converters with easy implementation and enhanced steady-state performance. IEEE Trans. Power Electron. 35, 9107-9118 (2020) https://doi.org/10.1109/tpel.2020.2969688
  35. Zhou, D., Yang, S., Tang, Y.: Model-predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation. IEEE Trans. Ind. Electron. 66, 4368-4378 (2019) https://doi.org/10.1109/tie.2018.2863181