DOI QR코드

DOI QR Code

Rotor winding inter-turn short-circuit fault detection in wound rotor induction motors using Wing Technique

  • Received : 2021.08.11
  • Accepted : 2022.01.06
  • Published : 2022.04.20

Abstract

The high probability of a rotor winding failure in a three-phase wound rotor induction motor (WRIM) due to the complicated structure of the rotor necessitates developing efficient techniques for detecting rotor winding faults in their evolving stages. FFT-based motor current signature analysis (MCSA) is extensively used to detect the electric failures of rotors. However, it is complemented by implementing alternative techniques to prevent the failure indicated by the MCSA. Rotor current-based fault detection schemes have been scarcely investigated and implemented in industry. However, this experimental study investigates the rotor winding inter-turn short-circuit (ITSC) faults in a WRIM based on the loci of the symmetrical components of the three-phase rotor currents £ (ir1-ir2) that form a 'Wing Shape.' Hence, the technique is called the 'Wing Technique.' The proposed fault-sensitive and noninvasive approach investigated the effiects of unbalanced stator voltages, constructional imbalances, and instrumentation errors on the measurement of rotor currents. It contributes to diagnosing the motor loading and to monitoring the insulation condition of the rotor windings even under lower fault levels. Experimental results presented for a 7.5 hp, 415 V, four-pole WRIM validate the competency of the proposed technique.

Keywords

References

  1. Heising, C.: IEEE recommended practice for the design of reliable industrial and commercial power systems. IEEE Inc., New York (1997)
  2. Tallam, R.-M., Habetler, T.-G., Harley, R.-G.: Transient model for induction machines with stator winding turn faults. IEEE Trans. Ind. Appl. 38(3), 632-637 (2002) https://doi.org/10.1109/TIA.2002.1003411
  3. Arkan, M., Kostic-Perovic, D., Unsworth, P.-J.: Modelling and simulation of induction motors with inter-turn faults for diagnostics. Electr. Power Syst. Res. 75(1), 57-66 (2005) https://doi.org/10.1016/j.epsr.2004.08.015
  4. Nazemi, M.-H., Haghjoo, F., Cruz, S.-M.A., Gallehdar, D.: Stator and rotor turn-to-turn fault detection in wound rotor induction machines based on the air-gap magnetic field distortion. IET Electr. Power Appl. 14(13), 2631-2639 (2020) https://doi.org/10.1049/iet-epa.2020.0350
  5. Faiz, J., Keravand, M., Ghasemi-Bijan, M., Cruz, S.-M., Bandar-Abadi, M.: Impacts of rotor inter-turn short circuit fault upon performance of wound rotor induction machines. Electr. Power Syst. Res. 135, 48-58 (2016) https://doi.org/10.1016/j.epsr.2016.03.007
  6. Naderi, P., Shiri, A.: Rotor/stator inter-turn short circuit fault detection for saturable wound-rotor induction machine by modified magnetic equivalent circuit approach. IEEE Trans. Magn. 53(7), 1-13 (2017) https://doi.org/10.1109/TMAG.2017.2672924
  7. Imoru, O., Mokate, L., Jimoh, A.-A., Hamam, Y.: Diagnosis of rotor inter-turn fault of electrical machine at speed using stray flux test method. In: Proc. IEEE AFRICON, pp. 1-5 (2015)
  8. Goktas, T., Arkan, M., Ozguven, O.-F.: Detection of rotor fault in three-phase induction motor in case of low-frequency load oscillation. Electr. Eng. 97(4), 337-345 (2015) https://doi.org/10.1007/s00202-015-0342-5
  9. Harrou, F., Ramahaleomiarantsoa, J.-F., Nounou, M.N., Nounou, H.N.: A data-based technique for monitoring of wound rotor induction machines: a simulation study. Int. J. Eng. Sci. Technol. 19(3), 1424-1435 (2016)
  10. Jose, A.-D., Alfredo, Q.-L., Vicente, C.-A., Carlos, G.-A.: Reliable detection of rotor winding asymmetries in wound rotor induction motors via integral current analysis. IEEE Trans. Ind. Appl. 53(3), 2040-2048 (2017) https://doi.org/10.1109/TIA.2017.2672524
  11. Valavi, M., Jorstad, K.-G., Nysveen, A.: Electromagnetic analysis and electrical signature-based detection of rotor inter-turn faults in salient-pole synchronous machine. IEEE Trans. Magn. 54(9), 1-9 (2018) https://doi.org/10.1109/TMAG.2018.2854670
  12. Rehman, A.-U., Chen, Y., Zhang, M., Zhao, Y., Wang, L., Liu, Y., Tanaka, T.: Fault detection and fault severity calculation for rotor windings based on spectral, wavelet and ratio computation analyses of rotor current signals for a doubly fed induction generator in wind turbines. Electr. Eng. 102, 1091-1102 (2020). https://doi.org/10.1007/s00202-020-00933-8
  13. Ayyappan, G.-S., Ramesh Babu, B., Srinivas, K., Raja Raghavan, M., Poonthalir, R.: Mathematical modelling and IoT enabled instrumentation for simulation & emulation of induction motor faults. IETE J. Res. 1-13 (2021). https://doi.org/10.1080/03772063.2021.1875272
  14. Abdel-Wahab, R.-R., Abdo, T.-M., Hanafy, H.-H.: Dynamic investigation of Georges phenomenon related to three-phase wound-rotor induction motor. J Electr. Syst. Inf. Technol. 7, 1-21 (2020) https://doi.org/10.1186/s43067-019-0008-x
  15. Vilhekar, T.-G., Ballal, M.-S., Suryawanshi, H.-M.: Detection of winding faults in wound rotor induction motor using loci of direct and quadrature axes of rotor currents. Electr. Power Compon. Syst. 45(11), 1217-1230 (2017)
  16. Diao, K., Sun, X., Lei, G., Bramerdorfer, G., Guo, Y., Zhu, J.: Robust design optimization of switched reluctance motor drive systems based on system-level sequential Taguchi method. IEEE Trans. Energy Convers. (2021). https://doi.org/10.1109/TEC.2021.3085668
  17. Shi, Z., Sun, X., Cai, Y., Yang, Z.: Robust design optimization of a fve-phase PM hub motor for fault-tolerant operation based on Taguchi method. IEEE Trans. Energy Convers. 35(4), 2036-2044 (2020) https://doi.org/10.1109/TEC.2020.2989438
  18. Sun, X., Wu, M., Lei, G., Guo, Y., Zhu, J.: An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. 68(5), 3782-3793 (2021) https://doi.org/10.1109/TIE.2020.2984433
  19. Adouni, A., Marques Cardoso, A.-J.: Thermal analysis of low-power three-phase induction motors operating under voltage unbalance and inter-turn short circuit faults. Machines 9(1), 2 (2021) https://doi.org/10.3390/machines9010002
  20. Frosini, L.: Novel diagnostic techniques for rotating electrical machines-a review. Energies 13(19), 5066 (2020) https://doi.org/10.3390/en13195066
  21. Ballal, M.-S., Ballal, D.-M., Suryawanshi, H.-M., Mishra, M.-K.: Wing technique: a novel approach for the detection of stator winding inter-turn short circuit and open circuit faults in three phase induction motors. J. Power Electron. 12(1), 208-214 (2012) https://doi.org/10.6113/JPE.2012.12.1.208
  22. Ballal, M.-S., Suryawanshi, H.-M., Choudhari, B.-N.: Extended wing technique approach for the detection of winding interturn faults in three-phase transformers. J. Power Electron. 15(1), 288-297 (2015) https://doi.org/10.6113/JPE.2015.15.1.288
  23. Ansuj, S., Shokooh, F., Schinzinger, R.: Parameter estimation for induction machines based on sensitivity analysis. IEEE Trans. Ind. Appl. 25(6), 1035-1040 (1989) https://doi.org/10.1109/28.44239