DOI QR코드

DOI QR Code

Optimal strategy for energy management of DC multi-microgrids considering power loss

  • Zhang, Weiliang (School of Electrical Engineering, Xi'an University of Technology) ;
  • Zhang, Hui (School of Electrical Engineering, Xi'an University of Technology) ;
  • Zhi, Na (School of Electrical Engineering, Xi'an University of Technology) ;
  • Wang, Hanwei (School of Electrical Engineering, Xi'an University of Technology)
  • Received : 2021.07.13
  • Accepted : 2021.11.26
  • Published : 2022.04.20

Abstract

DC multi-microgrids (DC MMG) improve power supply efficiency. However, they also increase transmission power loss. To reduce the power loss of the DC MMG, an optimization strategy of energy management with an adaptive distribution coefficient is proposed in this paper. By adjusting the power distribution coefficient of each DC microgrid (DC MG), the power distribution of the DC MMG is optimized to reduce power loss. In addition, to quickly predict changes of the DC MG power, the traditional finite control set model predictive control (FCS-MPC) is improved. The duty cycle of the converter is directly calculated according to the change of the current. Finally, experimental verification and comparison show that the proposed method can minimize the power loss of a DC MMG and speed up the balance of power.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (51877175 and 52077176); The Key Research Program of Shaanxi Province (2017ZDXMGY-003).

References

  1. Dragicevic, T., Xie, L., Blaabjerg, F.: Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids. IEEE J. Emerg. Sel. Topics Power Electron. 9(2), 1205-1221 (2021) https://doi.org/10.1109/JESTPE.2020.2978064
  2. Gupta, A., Doolla, S., Chatterjee, K.: Hybrid AC-DC microgrid: systematic evaluation of control strategies. IEEE Trans. Smart Grid. 9(4), 3830-3843 (2018) https://doi.org/10.1109/TSG.2017.2727344
  3. Dragicevic, T., Lu, X., Vasquez, J.C.: DC microgrids-Part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528-3549 (2016) https://doi.org/10.1109/TPEL.2015.2464277
  4. Nguyen, D.L., Lee, H.H.: Cooperative control strategy for voltage restoration and power allocation in DC microgrids. J. Power Electron. 20(3), 1025-1036 (2020) https://doi.org/10.1007/s43236-020-00101-y
  5. Meng, L., Shafee, Q., Trecate, G.F., et al.: Review on control of DC microgrids and multiple microgrid clusters. IEEE Trans. Power Electron. 5(3), 928-948 (2017)
  6. Shafee, Q., Dragicevic, T., Vasquez, J.C., et al.: Hierarchical control for multiple DC-microgrids clusters. IEEE Trans. Energy Convers. 29(4), 922-933 (2014) https://doi.org/10.1109/TEC.2014.2362191
  7. Zheng, Y., Song, Y., Huang, A., Hill, D.J.: Hierarchical optimal allocation of battery energy storage systems for multiple services in distribution systems. IEEE Trans. Sustain Energy 11(3), 1911-1921 (2020) https://doi.org/10.1109/tste.2019.2946371
  8. Parisio, A., Rikos, E., Glielmo, L.: A model predictive control approach to microgrid operation optimization. IEEE Trans. Control Syst. Tech. 22(5), 1813-1827 (2014) https://doi.org/10.1109/TCST.2013.2295737
  9. Xu, Q., Zhao, T., Xu, Y., et al.: A distributed and robust energy management system for networked hybrid AC/DC microgrids. IEEE Trans. Smart Grid. 11(4), 3496-3508 (2020) https://doi.org/10.1109/tsg.2019.2961737
  10. Kelly, J.J., Leahy, P.G.: Sizing battery energy storage systems: using multi-objective optimization to overcome the investment scale problem of annual worth. IEEE Trans. Sustain Energy 11(4), 2305-2314 (2020) https://doi.org/10.1109/tste.2019.2954673
  11. Gao, N., Zhang, B., Wu, W., et al.: Finite control set model predictive control integrated with disturbance observer for battery energy storage power conversion system. J. Power Electron. 21(7), 342-353 (2021) https://doi.org/10.1007/s43236-020-00197-2
  12. Pippia, T., Sijs, J., De Schutter, B.: A single-level rule-based model predictive control approach for energy management of grid-connected microgrids. IEEE Trans. Control Syst. Tech. 28(6), 2364-2376 (2020) https://doi.org/10.1109/tcst.2019.2945023
  13. Ali, H.H., Kassem, A.M., Al-Dhaifallah, M., et al.: Multi-verse optimizer for model predictive load frequency control of hybrid multi-interconnected plants comprising renewable energy. IEEE Access. 8(8), 114623-114642 (2020) https://doi.org/10.1109/ACCESS.2020.3004299
  14. Hu, B., Chen, Z., Zhang, Z., et al.: Model predictive DC-component power control for grid-connected inverters under unbalanced network. J. Power Electron. 21(13), 235-246 (2021) https://doi.org/10.1007/s43236-020-00176-7
  15. Merabet, A., Labib, L., Ghias, A.M.Y.M.: Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans. Smart Grid. 9(6), 5699-5709 (2018) https://doi.org/10.1109/tsg.2017.2694452
  16. McNamara, P., Milano, F.: Model predictive control based AGC for multi-terminal HVDC-connected AC grids. IEEE Trans. Power Syst 33(1), 1036-1048 (2018) https://doi.org/10.1109/tpwrs.2017.2694768
  17. Deshmukh, R.R., Ballal, M.S.: Integrated control scheme for dynamic power management with improved voltage regulation in DC microgrid. J. Power Electron. 20(15), 1550-1561 (2020) https://doi.org/10.1007/s43236-020-00152-1
  18. Wei, Z., Quan, Z., Wu, J., et al.: Deep deterministic policy gradient-DRL enabled multiphysics-constrained fast charging of lithium-ion battery. IEEE Trans. Ind. Electron. 99, 1-1 (2021)
  19. Xiao, J., Wang, P., Setyawan, L.: Hierarchical control of hybrid energy storage system in DC microgrids. IEEE Trans. Ind. Electron. 62(8), 4915-4924 (2015) https://doi.org/10.1109/TIE.2015.2400419
  20. Gao, F., Kang, R., Cao, J., Yang, T.: Primary and secondary control in DC microgrids: a review. J. Mod. Power Syst. Clean Energy 7(2), 227-242 (2019) https://doi.org/10.1007/s40565-018-0466-5
  21. Moayedi, S., Davoudi, A.: Distributed tertiary control of DC microgrid clusters. IEEE Trans. Power Electron. 31(2), 1717-1733 (2016) https://doi.org/10.1109/TPEL.2015.2424672
  22. Dubuisson, F., Rezkallah, M., Ibrahim, H., et al.: Real-time implementation of the predictive-based control with bacterial foraging optimization technique for power management in standalone microgrid application. Energies 14(6), 1722-1737 (2021) https://doi.org/10.3390/en14061722
  23. Wang, Z., Wang, P., Bi, H., et al.: A bidirectional DC/DC converter with wide-voltage gain range and low-voltage stress for hybrid-energy storage systems in electric vehicles. J. Power Electron. 20(10), 76-86 (2020) https://doi.org/10.1007/s43236-019-00017-2
  24. Wu, J., Wei, Z., Li, W., et al.: Battery thermal- and health-constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm. IEEE Trans. Ind. Inform. 17(6), 3751-3761 (2021) https://doi.org/10.1109/TII.2020.3014599
  25. Wu, J., Wei, Z., Liu, K., et al.: Battery-involved energy management for hybrid electric bus based on expert-assistance deep deterministic policy gradient algorithm. IEEE Trans. Veh. Technol. 69(11), 12786-12796 (2020) https://doi.org/10.1109/tvt.2020.3025627
  26. Shan, Y., Hu, J., Chan, K.W., et al.: Model predictive control of bidirectional DC-DC converters and AC/DC interlinking converters-a new control method for PV-wind-battery microgrids. IEEE Trans. Sustain Energy 10(4), 1823-1833 (2019) https://doi.org/10.1109/tste.2018.2873390
  27. Wang, S., Fernandez, C., Yu, C., et al.: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm. J. Power Sources 471, 228450 (2020) https://doi.org/10.1016/j.jpowsour.2020.228450
  28. Zhi, N., Ding, K., Du, L., et al.: An SOC-based virtual DC machine control for distributed storage systems in DC microgrids. IEEE Trans. Energy Convers. 35(3), 1411-1420 (2020) https://doi.org/10.1109/tec.2020.2975033