DOI QR코드

DOI QR Code

리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery

  • 최나현 (충북대학교 화학공학과) ;
  • 김은비 (충북대학교 화학공학과) ;
  • 염태호 (청주대학교 에너지광기술융합학부) ;
  • 이종대 (충북대학교 화학공학과)
  • Choi, Na Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Eun Bi (Department of Chemical Engineering, Chungbuk National University) ;
  • Yeom, Tae Ho (Division of Energy & Optical Technology Convergence, Cheongju University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2021.12.30
  • 심사 : 2022.02.09
  • 발행 : 2022.08.01

초록

본 연구에서는 고용량 음극 소재로 활용되는 실리콘의 부피팽창을 개선하기 위해 Si/CNT/C 음극 복합소재를 제조하였다. Si/CNT는 표면 개질에 의한 양전하 실리콘과 음전하 CNT의 정전기적 인력에 의해서 제조되었고, 수열합성에 의해서 구형의 Si/CNT/C 복합소재를 합성하였다. 전극 제조는 poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA) 및 styrene butadiene rubber (SBR) 바인더를 사용하였고, 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) 전해액 및 fluoroethylene carbonate (FEC)가 첨가된 전해액을 사용하여 전지를 제조하였다. Si/CNT/C 음극 복합소재는 SEM, EDS, XRD 및 TGA를 사용하여 물리적 특성을 분석하였으며, 사이클, 율속, dQ/dV 및 임피던스 테스트를 통해 리튬이온 배터리의 성능을 조사하였다. 활물질로 Si/CNT/C 복합소재, 바인더로 PAA/SBR, 전해액으로 FEC 10 wt%가 첨가된 EC:DMC:EMC 용매를 사용했을 경우, 50 사이클 후 914 mAh/g의 높은 가역 용량과 83%의 용량 유지율 및 2 C/0.1 C에서 70%의 속도 특성을 보여주었다.

In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

키워드

과제정보

이 논문은 충북대학교 국립대학육성사업(2021)지원을 받아 작성되었음.

참고문헌

  1. Eshetu, G. G., Zhang, H., Judez, X., Adenusi, H., Armand, M., Passerini, S. and Figgemeier, E., "Production of High-energy Liion Batteries Comprising Silicon-containing Anodes and Insertion-type Cathodes," Nat. Commun., 12, 5459(2021). https://doi.org/10.1038/s41467-021-25334-8
  2. Piwko, M., Kuntze, T., Winkler, S., Straach, S., Hartel, P., Althues, H. and Kaskel, S., "Hierarchical Columnar Silicon Anode Structures for High Energy Density Lithium Sulfur Batteries," J. Power Sources, 351, 183-191(2017). https://doi.org/10.1016/j.jpowsour.2017.03.080
  3. Karkar, Z., Guyomard, D., Roue, L. and Lestriez, B., "A Comparative Study of Polyacrylic Acid (PAA) and Carboxymethyl Cellulose (CMC) Binders for Si-based Electrodes," Electrochim. Acta, 258, 453-466(2017). https://doi.org/10.1016/j.electacta.2017.11.082
  4. Etacheri, V., Haik, O., Goffer, Y., Roberts, G. A., Stefan, I. C., Fasching, R. and Aurbach, D., "Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes," Langmuir, 28(1), 965-976(2012). https://doi.org/10.1021/la203712s
  5. Xu, Z. L., Liu, X., Luo Y., Zhou, L. and Kim, J. K., "Nanosilicon Anodes for High Performance Rechargeable Batteries," Prog. Mater. Sci., 90, 1-44(2017). https://doi.org/10.1016/j.pmatsci.2017.07.003
  6. Su, M., Liu, S., Tao, L., Tang, Y., Dou, A., Lv, J. and Liu, Y., "Silicon@graphene Composite Prepared by Spray-drying Method as Anode for Lithium Ion Batteries," J. Electroanal. Chem., 844(2), 86-90(2019). https://doi.org/10.1016/j.jelechem.2019.04.072
  7. Zhang, Y., Li, K., Ji, P., Chen, D., Zeng, J., Sun, Y., Zhang, P. and Zhao, J., "Silicon-multi-walled Carbon Nanotubes-carbon Microspherical Composite as High-performance Anode for Lithium-ion Batteries," J. Mater. Sci., 52, 3630-3641(2017). https://doi.org/10.1007/s10853-016-0503-6
  8. Shao, D., Tang, D., Mai, Y. and Zhang, L., "Nanostructured Silicon/porous Carbon Spherical Composite as a High Capacity Anode for Li-ion Batteries," J. Mater. Chem. A, 1, 15068-15075(2013). https://doi.org/10.1039/c3ta13616g
  9. Zhou, S., Zhang, M. and Xian, X., "Si@CNTs@melamine-formaldehyde Resin-based Carbon Composite and Its Improved Energy Storage Performances," J. Appl. Polym. Sci., 138(3), 49688(2021). https://doi.org/10.1002/app.49688
  10. Choi, N. H. and Lee, J. D., "Electrochemical Performances of Spherical Silicon/carbon Anode Materials Prepared by Hydrothermal Synthesis," Korean Chem. Eng. Res., 59(3), 326-332(2021). https://doi.org/10.9713/KCER.2021.59.3.326
  11. Yang, X. Q., McBreen, J., Yoon, W. S., Yoshio, M., Wang, H., Fukuda, K. and Umeno, T., "Structural Studies of the New Carbon-coated Silicon Anode Materials Using Synchrotron-based in situ XRD," Electrochem. Commun., 4(11), 893-897(2002). https://doi.org/10.1016/S1388-2481(02)00483-6
  12. Lee, D. Y., Lee, M. H., Kim, K. J., Heo, S., Kim, B. Y. and Lee, S. J., "Effect of Multiwalled Carbon Nanotube (M-CNT) Loading on M-CNT Distribution Behavior and the Related Electromechanical Properties of the M-CNT Dispersed Ionomeric Nanocomposites," Surf. Coat. Technol., 200(5-6), 1920-1925(2005). https://doi.org/10.1016/j.surfcoat.2005.08.024
  13. Lee, H. Y. and Lee, J. D., "Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica," Korean Chem. Eng. Res., 54(4), 459-464(2016). https://doi.org/10.9713/kcer.2016.54.4.459
  14. Zhang, W. J., "Lithium Insertion/extraction Mechanism in Alloy Anodes for Lithium-ion Batteries," J. Power Sources, 196(3), 877-885(2011). https://doi.org/10.1016/j.jpowsour.2010.08.114
  15. Li, X., Cho, J. H., Li, N., Zhang, Y., Williams, D., Dayeh, S. A. and Picraux, S. T., "Carbon Nanotube-Enhanced Growth of Silicon Nanowires as an Anode for High-Performance Lithium-Ion Batteries," Adv. Energy Mater., 2(1), 87-93(2012). https://doi.org/10.1002/aenm.201100519
  16. Park, B. H., Jeong, J. H., Lee, G. W., Kim, Y. H., Roh, K. C. and Kim, K. B., "Highly Conductive Carbon Nanotube Micro-spherical Network for High-rate Silicon Anode," J. Power Sources, 394, 94-101(2018). https://doi.org/10.1016/j.jpowsour.2018.04.112
  17. Chen, H., Wu, Z., Su, Z., Hencz, L., Chen, S., Yan, C. and Zhang, S., "A Hydrophilic Poly (methyl vinyl ether-alt-maleic acid) Polymer as a Green, Universal, and Dual-functional Binder for High-performance Silicon Anode and Sulfur Cathode," J. Energy Chem., 62, 127-135(2021). https://doi.org/10.1016/j.jechem.2021.03.015
  18. Komaba, S., Shimomura, K., Yabuuchi, N., Ozeki, T., Yui, H. and Konno, K., "Study on Polymer Binders for High-capacity SiO Negative Electrode of Li-ion Batteries," J. Phys. Chem. C, 115(27), 13487-13495(2011). https://doi.org/10.1021/jp201691g
  19. Ha, S., "Electrochemical and Thermal Behavior of Energy Storage and Conversion Systems: Lithium Ion Batteries and PEM Fuel Cells," ProQuest, 3664028(2015).
  20. Xu, C., Lindgren, F., Philippe, B., Gorgoi, M., Bjorefors, F., Edstrom, K. and Gustafsson, T., "Improved Performance of the Silicon Anode for Li-ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as An Effective Electrolyte Additive," Chem. Mat., 27(7), 2591-2599(2015). https://doi.org/10.1021/acs.chemmater.5b00339
  21. Lee, J. H., Kim, S. H., Kim, W. and Choi, W. J., "A Research on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance," Trans. Korean Inst. Power Electron., 14(6), 457-465(2009).