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Abstract

Emotional labor, characterized by a dysfunctional type of emotional regulation called surface acting, has 

detrimental psychological consequences on employees, including depression and social anxiety. Because such 

disorders exhibit psychological characteristics manifested through brain activation, previous studies have succeeded 

in distinguishing individuals with depression and social anxiety from healthy controls using their functional 

connectivity characteristics. However, it has not been established whether the functional connectivity characteristics 

associated with emotional labor are distinguishable. Thus, we obtained resting-state fMRI data from participants in 

the emotion labor (EL) group and control (CTRL) group, and we subjected their whole-brain functional connectivity 

matrices to a linear support vector machine classifier. Our analysis revealed that the EL and CTRL groups could 

be successfully distinguished on the basis of individuals' connectivity patterns, and confidence in the classification 

was correlated with the scores on the depression and social anxiety scales. These results are expected to provide 

insight on the neurobiological characteristics of emotional labor and enable the sorting of employees undergoing 

adverse emotional labor utilizing neurobiological observations.
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1. INTRODUCTION
 1)

Social context demands appropriate regulation of 

emotions, especially in regard to display of emotions. 

This is particularly true for emotional laborers, who man-

age emotions for a wage (Hochschild, 1983). Integrating 

conceptualizations formed by previous work (Ashforth 

& Humphrey, 1993; Hochschild, 1983; Morris & Feldman, 

1996), Grandey (2000) defines emotional labor as an 

emotion regulation process. As emotional expressions 

are in discord with the emotions actually felt by emo-

tional laborers (emotional dissonance), emotion regu-

lation strategies are used to narrow the gap. Emotional 

labor may offer benefits from the organization’s per-

spective in that it implies adherence to its explicit and 

implicit ‘display rules,’ which are standards that specify 

the appropriate expression of emotions that employees 

should show to the public (Diefendorff et al., 2005; 
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Grandey, 2000). For example, if a flight attendant wears 

a smile instead of expressing anger or irritation toward 

passengers, the airline may benefit from the external im-

age of kindness. However, previous research suggests 

that the same may not apply to employees. Emotional 

labor is known to be closely related to a maladaptive 

emotion regulation strategy called ‘surface acting,’ in 

which employees suppress their true emotions to display 

mandated emotional expressions (Grandey, 2000). 

Regarding the process model of emotion regulation pro-

posed by Gross (1998b), surface acting corresponds to 

the response-focused form of emotional regulation strat-

egy (Huyghebaert et al., 2018) implying suppression, 

which is known to fail in relieving individuals from ex-

periencing negative emotions, as it occurs after emo-

tional responses (Lee et al., 2016; Lu et al., 2019; 

Tiphaine et al., 2018). As the implied suppression ren-

ders employees to feel inauthentic due to the fact that 

it does not affect the subjective experience of negative 

emotions (Grandey, 2000; Gross, 1998a; Gross & 

Levenson, 1997), surface acting is known to be 

deleterious. A model suggested by Park et al. (2019) ex-

plaining the effect of surface acting on psychological 

distress demonstrates the mediating role of the afore-

mentioned emotional dissonance (Fig. 1). As such, sur-

face acting is considered maladaptive in that it causes 

psychological distress via emotional dissonance.

The stated psychological distress is suggested to in-

clude adversities like depression and anxiety. One re-

search on call center workers indicates that the level of 

surface acting in emotional labor is positively associated 

with depressive symptoms (Kim & Choo, 2017). 

Another research targeting bank clerks presents empiri-

cal evidence that emotional labor characterized by emo-

tional dissonance may indeed be related to depression 

(Cho & Park, 2016). Yom et al. (2017) suggest that 

emotional laborers may feel that negative emotions are 

no longer bearable as they continuously display man-

datory politeness when feeling these emotions, and that 

such unbearable emotions lead to depression. Surface 

acting in emotional labor is also suggested to be pos-

itively associated with social anxiety, which in turn is 

negatively associated with work performance (Reyhanoglu 

& Balikçioğlu, 2019). A study of nursing students in 

clinical practice demonstrated that social anxiety is pos-

itively correlated with emotional labor (Yeom, 2019). 

Though the influential direction between emotional labor 

and social anxiety is yet obscure, it is proposed that 

emotional laborers refrain from expressing emotions to 

avoid interpersonal conflict (particularly with superiors, 

as they require obedience to display rules) that may lead 

to disadvantages in evaluation (Kang et al., 2018; Yeom, 

2019). In this perspective, suppressing negative feelings 

is a performance in which emotional laborers must ac-

complish, and the anxiety arising from such performance 

would be identical to social anxiety.

While depression and social anxiety are primarily per-

ceived as psychological characteristics, many studies 

show that they are accompanied by abnormalities in 

brain connectivity (Ding et al., 2011; Pannekoek et al., 

2013; Sheline et al., 2010). With the advancement in 

the neuroimaging field, manifestations of abnormal 

functional connectivity have been successfully utilized 

to discriminate individuals with depression and social 

anxiety from healthy controls via machine learning. For 

example, a study by Zeng et al. (2012) revealed that 

depressed patients and healthy controls can be correctly 

classified with a 94.3% accuracy, and that discriminating 

functional connections are observed in the default mode 

network, affective network, visual cortical areas and 

cerebellum. Similarly, Liu et al. (2015) classified pa-

tients with social anxiety disorder from healthy controls 

with a correct classification rate of 82.5%, using con-

Fig. 1. Model suggested by Park et al. (2019) depicting the

effect of surface acting on psychological distress and 

the mediation by emotional dissonance 
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nections in or across the default mode, visual, sen-

sory-motor, affective networks and the cerebellum. 

However, functional connectivity characteristics asso-

ciated with emotional labor, including the afore-

mentioned psychological factors of depression and social 

anxiety, are yet to be investigated. One method of exam-

ining such characteristics is the functional connectivity- 

based MVPA (fcMVPA), which is a relatively novel 

method that uses functional connectivity as features of 

MVPA (a multivariate technique that analyzes complex 

patterns generated by a combination of various features) 

to detect any information in the whole-brain functional 

connectivity pattern (Dosenbach et al., 2010). Previous 

neuroimaging studies using the fcMVPA approach have 

been successful in applying the method to resting-state 

or task-based fMRI data to classify clinical populations, 

such as patients with social anxiety disorder (Pantazatos 

et al., 2014; Zhu et al., 2017), or depression (Drysdale 

et al., 2017), and to predict individual traits, such as per-

sonality (Dubois et al., 2018a), sustained attention 

(Rosenberg et al., 2016), or fluid intelligence (Dubois 

et al., 2018b; Greene et al., 2018).

The present study utilized the fcMVPA method and 

machine learning algorithm to investigate the neuro-

biological characteristics associated with emotional la-

bor experience. Through the machine learning classi-

fication algorithm, we tested whether emotional laborer 

(EL) and control (CTRL) groups could be distinguished 

by patterns of intrinsic connectivity, and examined 

which regions or networks were most critical in classify-

ing these two groups.  Furthermore, correlations between 

psychological consequences, specifically depression and 

social anxiety, and classification were examined.

2. METHODS

2.1. Participants

Forty-eight individuals were enrolled in the experi-

ment and underwent the Structured Clinical Interview 

for DSM-IV administered by a trained interviewer. All 

of the individuals were included as none of them met 

the criteria for any psychiatric disease and displayed ab-

normal cognitive function. Among the individuals, 18 

participants (1 male, mean age = 38.2) enrolled as emo-

tional laborers, and 30 participants (14 males, mean age 

= 25) were assigned to the control group. The 18 partic-

ipants enrolled as emotional laborers were frontline call 

center employees recruited from Dasan Call Center. We 

selected the employees from Dasan Call Center consid-

ering that a call center employee is regarded a repre-

sentative emotional labor occupation. All participants 

had a normal or corrected-to-normal vision and did not 

have ferromagnetic implants, tattoos, or head injury. All 

participants were reimbursed with monetary compensa-

tion ($100). This prospective study was approved by the 

Institutional Review Board of the university, and in-

formed consent was obtained from all subjects.

2.2. Clinical assessment

Clinical characteristics of participants, such as depres-

sion and social anxiety, were measured through stand-

ardized questionnaires. The total score of each partic-

ipant’s depression was obtained through the Center of 

Epidemiologic Studies Depression Scale (CESD), which 

consists of 20 items regarding how frequently depressive 

symptoms (loss of appetite, depressed mood, difficulty 

in focusing, loneliness, etc.) occurred during the past 

week. Participants’ social anxiety was measured using 

the Liebowitz Social Anxiety Scale (LSAS), which con-

sists of two subscales of anxiety and avoidance in social 

situations. 24 identical items were rated in terms of both 

anxiety and avoidance. The total score was calculated 

through the sum score of both subscales.

The two questionnaires were selected because they 

have been used in an extensive amount of studies, in-

dicating that they are reliable in assessing depression 

and social anxiety. The Korean version of CESD and 

LSAS was used in this study. The Korean version of 

CESD is acknowledged to show good internal con-
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sistency for both non-clinical (.91) and clinical (.89) 

groups (Cho & Kim, 1993). The Korean version of 

LSAS is also known to show good internal consistency 

regarding both subscales in clinical (.92 for anxiety and 

avoidance) and non-clinical groups (.93 for anxiety and 

.90 for avoidance; Yu et al., 2007).

2.3. Image acquisition

Neuroimaging data were obtained with a 3T Philips 

Ingenia MRI scanner (Philips Healthcare, Best, The 

Netherlands) using a 32-channel head coil. Whole-brain 

functional images were acquired with a T2*-weighted 

gradient-echo echoplanar imaging (EPI) sequence (TR = 

2000 ms, TE = 30 ms, flip angle = 90°, field of view 

= 240 × 240 mm, 33 interleaved axial slices without gap, 

voxel size = 3.75 × 3.75 × 4 mm). The first five dummy 

volumes were discarded prior to the actual data collection 

to ensure magnetization equilibrium. Ten minutes of rest-

ing-state fMRI (300 volumes) were collected when partic-

ipants were instructed to keep their eyes closed and not 

to sleep. A soft foam pad was used to minimize partic-

ipants’ head movement. The high-resolution T1-weighted 

MRI data were also acquired after functional scans using 

a 3D T1-TFE sequence (TR = 9.6 ms, TE = 4.6 ms, flip 

angle = 8°, field of view = 220 × 220 mm; sagittal slices 

without gap, voxel size = 0.43 × 0.43 × 1 mm).

2.4. Data preprocessing and head motion correction

Functional imaging preprocessing and resting-state 

functional connectivity analysis were conducted using the 

Data Processing and Analysis for Brain Imaging (DPABI) 

toolbox (Yan et al., 2016), which is based on SPM12 

(Wellcome Department of Cognitive Neurology, London, 

U.K.). All functional scans were corrected for slice ac-

quisition timing, realigned to adjust for head motion, 

co-registered to each participant’s high-resolution ana-

tomical images, normalized to standard MNI-152 space, 

and spatially smoothed using a 6 mm full-width half-max-

imum (FWHM). These preprocessed data were then sub-

mitted to ICA-AROMA, an ICA-based automated tool for 

removing motion artifact, to minimize head motion con-

founds that could affect the results of functional con-

nectivity analysis (Pruim et al., 2015a; Pruim et al., 

2015b). Additionally, nuisance covariates including mean 

signals from white matter and cerebrospinal fluid (CSF) 

masks were then regressed out. The data were also de-

trended by removing linear trends of time courses and 

then temporally filtered using a band-pass filter of 

0.01-0.08 Hz to reduce the effect of low-frequency drift 

and high-frequency respiratory and cardiac noise.

2.5. Functional connectivity multivariate 

pattern analysis (fcMVPA) 

To investigate the neurobiological characteristics re-

lated to emotional labor experience, we performed a 

multivariate pattern analysis using functional connectivity 

features. fcMVPA is a novel data-driven technique that 

could detect subtle information present in the whole-brain 

functional connectivity pattern (Dosenbach et al., 2010; 

Finn et al., 2015), and thus well-suited for exploring 

how emotional laborers differ from others in terms of 

neural architecture. By using fcMVPA, we aimed to test 

whether patterns of intrinsic functional connectivity can 

differentiate between emotional laborers and healthy 

controls and, if possible, which networks are the most 

crucial features that distinguish the two groups.

2.6. Node and edge definition

To define the nodes for functional connectivity that 

covering the whole-brain, we first parcellated the 

whole-brain into 246 nodes including both cortical and 

subcortical regions using the Brainnetome Atlas (Fan et 

al., 2016). Since this atlas was defined based on struc-

tural and functional connectivity, it is suitable for con-

nectivity-based group classification. The mean time-ser-

ies were then calculated for each region by averaging 

the BOLD signal time-series of all voxels within each 

region, resulting in 246 representative time-series for 
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each participant. For each participant, a 246 × 246 con-

nectivity matrix was computed using Pearson correlation 

coefficients (r) between all pairs of the 246 nodes and 

then subjected to Fisher’s r-to-z transformation. Since 

these matrices were symmetric with respect to the diago-

nal, the lower-half triangular parts of these functional 

connectivity matrices (246 × (246 - 1) / 2 = 30,135) were 

then used as input features for pattern classification.

2.7. Connectivity-based multivariate pattern 

analysis

We conducted fcMVPA to test whether resting-state 

functional connectivity patterns could be accurately clas-

sified based on their group membership (i.e., emotional 

laborers vs. healthy controls). For these group classi-

fication tasks, we employed a SVM with a linear kernel 

and a constant regularization parameter of c = 1 using 

MATLAB Spider toolbox (http://people.kyb.tuebingen. 

mpg.de/spider). Classification performance was estimated 

using a leave-one-out cross-validation (LOOCV) method 

such that iteratively test data from one participant with 

an SVM classifier trained with data from the remaining 

n – 1 participants. For each iteration, the accuracy would 

be 1 if the classifier correctly predicted the class label 

of the test data, whereas the accuracy would be 0 if the 

prediction was incorrect. The accuracies calculated from 

all 48 rounds of iterations were then averaged to obtain 

a single representative accuracy measure.

It is important to note that the larger number of fea-

tures does not necessarily improve classification per-

formance in machine learning techniques, because it can 

suffer from the curse of dimensionality. Also, from a 

neuroscientific perspective, it is also important to in-

crease the interpretability of fcMVPA results, which 

would decrease as the number of connectivity features 

increases. Therefore, in order to simultaneously explore 

the potentially informative features for discriminating 

two groups and find out the optimal number of features, 

we applied a filter-based feature selection method using 

t-test and then iteratively estimated the classifier per-

formance according to the number of features included. 

For feature selection, 48 iterations of two-sample t-tests 

were performed to compare the difference between the 

means of the two populations (i.e., emotional laborers 

vs. healthy controls) with the data from 47 out of 48 

participants by excluding one sample per each iteration. 

The t-scores obtained from 48 iterations for each feature 

were then averaged to generate one representative 

t-score value for each feature. The 30,135 features were 

then ranked in descending order according to their abso-

lute t-score value, and the z-score transformation was 

applied to the r-value of each feature to improve 

normality. We then compute the classification accuracies 

as a function of the number of features included, 

Specifically, in the n-th iteration, SVM using the top 

n features classified whether the class label of a given 

vector (i.e., functional connectivity pattern) was ‘EL’ or 

‘CTRL’. As a result, this procedure yielded a total of 

30,135 LOOCV classification accuracy measures.

2.8. Age control

To minimize the potential effect of age on classi-

fication results, we applied the age control method used 

in a previous study that took a similar connectivity- 

based multivariate approach (Hsu et al., 2018). Before 

performing the actual pattern classification analysis, we 

first computed the Pearson correlation between every 

edge and age and then excluded any edge that was sig-

nificantly correlated with age (p < .05). Although this 

control method seems to be so conservative that it elimi-

nates edges associated with age but critical for group 

classification, it is a necessary procedure given the age 

difference of our samples.  

2.9. Permutation testing

To estimate the statistical significance of our classi-

fication accuracies, we calculated the null distributions 

by performing 1,000 iterations of non-parametric permu-

tation testing. For each iteration of permutation testing, 
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we randomly shuffled the original group labels and then 

conducted the exact same classification analysis, includ-

ing feature selection, age control, and LOOCV. The 

p-values were calculated as the proportion of permuta-

tions that showed higher than or equal to the original 

classification accuracies.

2.10. Edge feature characteristics

We summarized the edge features of our final classi-

fier using measures drawn from the graph theory. The 

degree centrality and betweenness centrality for each 

node was calculated, and nodes with high degree or be-

tweenness centrality were identified. Degree centrality 

is defined as the number of edges connected to that 

node, while betweenness centrality is defined as the 

number of shortest paths between all pairs of all other 

nodes that pass through the node (Freeman, 1977; 

Girvan & Newman, 2002). Betweenness centrality can 

be easily understood as how much a certain node inter-

feres the shortest paths between two nodes, or as how 

often a certain node is included regarding all shortest 

paths. Thus, a node with high betweenness centrality is 

considered to be important in transferring information 

across the network because it is more likely to be in-

volved in the flow of information.

3. RESULTS

3.1. Demographic and clinical assessment 

results

Statistical analyses were conducted using the IBM 

SPSS Statistics 25 software. Difference in age between 

the EL group (M = 39.56, SD = 8.26) and CTRL group 

(M = 25.63, SD = 7.28) was significant (t(46) = 6.10, 

p < .001, Cohen’s d = 1.79). It should be noted that 

one of the participants from the EL group did not answer 

the CESD and LSAS, thus the number of total partic-

ipants considered in the questionnaires is 47. Independent 

samples t-tests were conducted to determine whether 

there were significant differences in the depression and 

social anxiety scores. The mean CESD score of the EL 

group (M = 25.29, SD = 10.37) was significantly higher 

than that of the CTRL group (M = 13.40, SD = 8.46), 

t(45) = 4.27, p < .001. The mean LSAS score of the 

EL group (M = 49.00, SD = 18.47) was also significantly 

higher than that of the CTRL group (M = 25.67, SD 

= 19.54), t(45) = 4.01, p < .001. Demographic and clincal 

assessmet results are shown in Table 1.

3.2. Discriminating between EL and CTRL groups 

using functional connectivity patterns

To investigate whether the EL and CTRL groups can 

be distinguished by patterns of resting-state functional 

connectivity, we performed connectivity-based MVPA. 

We first parcellated each participant’s whole-brain into 

246 previously defined nodes and then calculated pairwise 

correlation coefficients between the mean BOLD signal 

time-series of these brain regions. Each participant’s 246 

× 246 connectivity matrix was used as input features for 

linear SVM classifiers. After eliminating 1,716 edges that 

were significantly correlated with age (p < .05), the re-

maining 28,419 edges were finally used for pattern 

classification. To find an optimized classifier model with 

the highest performance while at the same time having 

as few features as possible, we first iteratively performed 

an SVM classification and obtained a LOOCV accuracy 

as a function of the number of edges included.

For pattern classification, we found that two groups 

(EL vs. CTRL) could be successfully classified based 

on their resting-state functional connectivity patterns. 

The peak classification accuracy reached 91.7% when 

EL group CTRL group

Age
M = 39.56

SD = 8.26

M = 25.63

SD = 7.28

CESD
M = 25.29

SD = 10.37

M = 13.40

SD = 8.46

LSAS
M = 49.00

SD = 18.47

M = 25.67

SD = 19.54

Table 1. Demographic and clinical assessment results
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the top 326 edges were included, suggesting that the two 

groups showed different intrinsic connectivity pattern. 

The classification performance then gradually decreased 

and finally reached a chance-level accuracy of 52.1% 

when the complete set of edges was included, indicating 

that additional features not always contributed to classi-

fication performance.

To test the statistical significance of the peak classi-

fication accuracy obtained from fcMVPA, we conducted 

permutation testing. By performing 1,000 iterations of 

permutation, we obtained the null distributions of classi-

fication accuracy and the p-values were also calculated 

from these null distributions. The results showed that the 

permutation accuracies of 1000 iterations remained near 

50% except for the initial classification results with few 

features, which suggests that our classification methods 

are unbiased. The peak classification accuracy of 91.7% 

with 326 edges was statistically significant (p = .002; 

permutation test), indicating that this peak accuracy was 

indeed derived from two distinct functional connectivity 

patterns of two groups (Fig. 2). 

Fig. 2. Classification accuracy performance as a function of 

number of edges included.

3.3. Investigation of potential confounds

We next tested whether any other potential confounds 

might have influenced our main classification results. 

First, although we used ICA-AROMA tool to remove 

motion-related artifacts, there may be potential remain-

ing effects of head motion in connectivity analysis 

(Power et al., 2012). We thus additionally investigated 

whether EL and CTRL groups show different head mo-

tion, defined as the mean framewise displacement (FD). 

The results showed that the head motion did not sig-

nificantly differ for EL versus CTRL (t(46) = 0.345, 

p = .732). More specifically, when we compared each 

six head motion parameters (i.e., three for mean trans-

lation and three for mean rotation) separately, any of 

these parameters was not significantly different between 

two groups (Tx, t(46) = .057, p = .955; Ty, t(46) = 

1.094, p = .280; Tz, t(46) = .499, p = .620; Rx, t(46) 

= 1.704, p = .095; Ry, t(46) = .031, p = .975; Rz, t(46) 

= .015, p = .988). Taken together, these results suggest 

that our main classification result was not due to poten-

tial differences in head motion between two groups.

Next, we note that our sample of participants was not 

balanced for gender (EL: 1 male, 17 females; CTRL: 

14 males, 16 females). We thus tested whether our final 

classification model with the peak accuracy could pre-

dict gender regardless of the original group label (i.e., 

EL vs. CTRL). The accuracy of gender classification 

with the same 326 edges was 64.58%, which did not 

significantly exceed chance (p = .22; permutation test), 

suggesting that our main classification performance was 

not due to the imbalanced gender ratio of each group.

3.4. Relating classifier evidence with behavioral 

measures

To further investigate the nature of our connectivity- 

based classification results, we computed the distance 

from hyperplane for each participant and then examined 

whether this value correlated with behavioral measures. 

Basically, a binary linear SVM classifier divides the fea-

ture space into two spaces corresponding to each class 

label by finding the optimal decision boundary, which 

typically referred to as the ‘hyperplane’. Thus, while the 

direction of each participant means the SVM classifier’s 

decision, the distance from the hyperplane can be in-

terpreted as the “confidence” of that decision. In other 

words, participants farther from the hyperplane in the 
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positive (+) direction can be more confidently classified 

as ‘EL’, and participants farther from the hyperplane in 

the negative (－) direction can be more confidently clas-

sified as ‘CTRL’ (Etzel et al., 2016; Frankland & Green, 

2015; Qiao et al., 2017). By calculating these values, 

we could obtain a continuous one-dimensional measure 

as a classifier evidence and explore the relationship be-

tween this measure and the behavioral characteristics of 

each participant.  

This analysis revealed that the distance from hyper-

plane showed a significant correlation with the CESD 

score (r = .40, p < .001), indicating that the higher the 

depression score, the more confidently the participants 

were classified as ‘EL’. Also, the LSAS score was pos-

itively correlated with the distance from hyperplane 

(r = .35, p < .001), indicating that the higher social anxi-

ety score, the more confidently the participants were 

classified as ‘EL’ (Fig. 3).

3.5. Edge feature characteristics

Since the edges of our classification model are dis-

tributed throughout the whole-brain, we summarized the 

edge features of our final classifier using measures 

drawn from the graph theory. First, we calculated the 

degree centrality. The node with the highest degree cen-

trality was the superior parietal lobule (SPL). In addi-

tion, several other nodes including the inferior parietal 

lobule (IPL), posterior superior temporal sulcus (pSTS), 

thalamus, medial frontal gyrus (MFG), superior frontal 

gyrus (SFG) also showed higher degree centrality. To 

further explore the characteristics of the edge feature of 

our classifier, we additionally calculated the SVM 

weight for each edge. The SVM weight was calculated 

via the Spider Machine Learning Toolbox (http://people. 

kyb.tuebingen.mpg.de/spider). Detailed explanation on 

Fig. 3. Correlation between behavioral measures and distance from hyperplane 

Fig. 4. Edge feature characteristics 
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the speficic formula used can be found in the article by 

Qiao and colleagues (2017). When the degree centrality 

was computed separately according to the sign of SVM 

weight (i.e., + weight for EL, - weight for CTRL), the 

SPL and IPL showed higher degree centrality calculated 

from + weight edges, and the OFC and MFG showed 

higher degree centrality calculated from – weight edges 

(Fig. 4). 

Next, we also computed the weighted betweenness 

centrality with the SVM weight for each edge. The re-

sults were similar to the results of the previous degree 

centrality analysis. The node with the highest between-

ness centrality was the SPL, and the MFG, SFG, OFC, 

thalamus, pSTS, IPL nodes also showed higher value of 

weighted betweenness centrality.

4. DISCUSSION

In the present study, we investigated whether EL and 

CTRL groups showed distinct patterns of resting-state 

functional connectivity. The results revealed that the 

classification of these two groups based on functional 

connectivity features was successful. Further detailed 

analysis suggested that these classification results might 

be related to the emotional laborers’ depression or social 

anxiety symptoms due to the experience of emotional 

labor, rather than other confounds such as head motion, 

age, or gender. Given the data-driven nature of our 

fcMVPA approach and the distributed nature of the 

edges used in our classification model, we summarized 

the edge features using graph theory measures to explore 

the potential hub regions critical to discriminate these 

two groups. The results showed that several parietal and 

frontal regions including SPL, IPL, OFC, MFG, and 

SFG might be the hub regions that make the connectivity 

patterns of the two groups different.

The hub regions elicited in the present study are in 

line with previous research on the neural basis of emotion 

regulation. The IPL and SPL are suggested to be related 

to the appraisal process in emotion regulation based on 

experiments using emotional stimuli and fMRI ob-

servations (Drabant et al., 2009; McRae, 2010; Ochsner 

et al., 2002; Roberto, 2013). While one study discovered 

hyper-connectivity between the periaqueductal gray and 

the IPL in social anxiety disorder patients (Anteraper et 

al., 2014), a study on mindfulness-based stress reduction, 

which is a well-known emotion regulation strategy, showed 

an increase of response in the IPL and SPL regions in 

social anxiety patients after 8 weeks of practice reflecting 

attentional engagement (in contrast to avoidance) to the 

given emotional probe (Goldin et al., 2013). Moreover, 

resting-state connectivity between the SPL and regions 

or networks such as the ventral caudate, default mode 

network, and both cerebral hemispheres are characteristic 

in depression (Cieri et al., 2017; Yang et al., 2017). 

In a more comprehensive network perspective, the 

high centrality demonstrated by certain nodes suggest 

further implications. As a part of the default mode net-

work, the SPL is proposed to be involved in the notion 

of ‘surveillance’ or ‘watchfulness’ to environmental cues 

in resting-state (Davey et al., 2016). Based on the high 

LSAS score and focused connectivity to the SPL, it is 

plausible to interpret that the EL group may exhibit ex-

cess surveillance, especially to social cues, even when 

tasks are absent. This interpretation is further supported 

by the fact that the pSTS, which was observed as anoth-

er key node, is known to be a focal point of the brain 

network for social perception (Lahnakoski et al., 2012). 

It is also noteworthy that the IPL, which is also a part 

of the default mode network, functions as a critical con-

vergence area for various networks concerning attention 

and social interaction (Kernbach et al., 2018; Segheir, 

2013), and serves as a key region for social cognition 

(Numssen et al., 2021). Notably, regarding its function 

in attention, it is suggested that the IPL is associated 

with allocating attention to relevent information, encod-

ing salient stimuli, and maintaining attention (Ciaramelli 

et al., 2008; Singh-Curry & Husain, 2009). These net-

work characteristics altogether may reflect the prolonged 

distress the call center workers experience receiving 

constant complaints from other people and the sensi-
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tivity they possess in discerning others’ emotions, per-

haps to express their own as the display rules require.

The result that the OFC, which is well-known as part 

of the limbic system (Mega et al., 1997), was also a hub 

region differentiating the EL group and CTRL group sup-

ports possibilities of abnormalities in emotion regulation. 

Many studies confirm the OFC’s association with the 

emotion regulation process, including emotional control, 

reappraisal and behavioral expression of emotions 

(Davidson et al., 2000; Golkar et al., 2012; Hooker & 

Knight, 2006; Shimamura, 2000). For example, the BOLD 

signal in the OFC increased when participants were in-

structed to suppress their emotional reactions in response 

to a sad film (Lévesque, 2003). Moreover, connectivity 

between the OFC and amygdala is suggested to predict 

successful emotion regulation (Banks et al., 2007). Such 

observed association of the OFC may be related to the 

pervasive surface acting emotional laborers experience.

To our knowledge, this is the first neuroimaging 

study to examine the neurobiological characteristics of 

emotional laborers. Previous studies on emotional labor 

have often focused on the psychological mechanisms 

of emotional labor (Grandey & Gabriel, 2015). Taking 

advantages of both resting-state fMRI that can identify 

important neural changes including the occupational ef-

fects and machine learning technique that can detect 

subtle information, we showed that fcMVPA would 

provide a useful method to examine the neural mecha-

nisms associated with work experience such as emo-

tional labor. Although our exploratory data-driven ap-

proach provides an important starting point for studies 

on the neural characteristics of emotional laborers, fur-

ther research is needed to unravel the neurocognitive 

basis of emotional labor.

Apart from results based on neurobiological measure-

ments, clinical assessments also presented some note-

worthy implications on the mental health of emotional 

laborers. The mean CESD score of the EL group was 

higher than the traditional cutoff score of 16 for clinically 

screening major depression. This result is in line with 

previous research suggesting that emotional laborers may 

indeed experience depressive symptoms (Cho & Park, 

2016; Kim et al., 2002; Kim & Choo, 2017). Similarly, 

the mean LSAS score of the EL group was also higher 

than the suggested cutoff score of 30 (Rytwinski et al., 

2009) for classifying social anxiety. Though study on the 

relation between social anxiety and emotional labor is 

less robust than that of depression and emotional labor, 

our data suggests that emotional laborers are more vul-

nerable to social anxiety than others. Future research may 

investigate factors such as avoidance of interpersonal 

conflict that may explain this relation. As a whole, the 

results on our questionnaires raise alarm to managing the 

psychological adversities of emotional labor.

Although our study holds important implications, it 

is not without its limits. We used several methods to 

control the effects of confounds such as head motion, 

age, and gender. However, it is possible that these ef-

fects still remain because our data set was not matched 

for these variables, and the two groups lack in 

homogeneity. In addition, our classification results do 

not provide a causal relationship between the experience 

of emotional labor and the structure of functional 

connectivity. Thus, future studies with a larger, 

well-controlled sample and longitudinal data would pro-

vide more rigorous findings on the influence of emo-

tional labor on the neural structure.

5. CONCLUSION

In summary, classification between emotional la-

borers and controls based on resting-state functional 

connectivity was successful. Our findings suggest that 

functional connectivity-based MVPA is an especially 

useful technique to explore the occupational effects on 

the brain. Moreover, by showing that several parietal 

and frontal regions play a key role in distinguishing 

these two groups, we provide an important starting 

point to further study the neural basis of emotional 

labor.
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