DOI QR코드

DOI QR Code

Zero-current-switching full-bridge DC/DC converter with reduced conduction losses for renewable energy MVDC collection systems

  • He, Xiaokun (School of Electrical Engineering, Southeast University) ;
  • Hu, Renjie (School of Electrical Engineering, Southeast University)
  • Received : 2021.06.29
  • Accepted : 2021.12.31
  • Published : 2022.03.20

Abstract

When compared to the conventional AC collection system, the DC collection system for renewable energy sources presents lots of advantages. High power high-voltage DC/DC converters are essential equipment for medium voltage DC (MVDC) grid. A novel zero-current-switching full-bridge DC/DC converter is proposed in this paper. In particular, a blocking capacitor is introduced to rapidly decay the circulating current to zero. Hence, both the switching loss and conduction loss can be reduced. A scaled-down 120 V/1.2 kV, 2 kW prototype was built to validate the effectiveness of the proposed converter.

Keywords

References

  1. REN21: Renewables 2020 global status report. https://www.ren21.net/gsr-2020/ (2021)
  2. Siddique, H.A.B., De Doncker, R.W.: Evaluation of DC collector-grid configurations for large photovoltaic parks. IEEE Trans. Power Deliv. 33(1), 311-320 (2018) https://doi.org/10.1109/tpwrd.2017.2702018
  3. Camurca, L., Langwasser, M., Zhu, R., Liserre, M.: Future MVDC applications using modular multilevel converter. In: Energy Conference (ENERGYCon) 2020 6th IEEE International, pp. 1024-1029 (2020)
  4. Suryadevara, R., Parsa, L.: FB-ZCS DC-DC converter with dual-capacitor resonant circuit for renewable energy integration with MVDC grids. Ind. Appl. IEEE Trans. 56(6), 6792-6802 (2020) https://doi.org/10.1109/TIA.2020.3016926
  5. Zhuang, Y., Liu, F., Huang, Y., Zhang, X., Zha, X.: A voltage-balancer-based cascaded DC-DC converter with a novel power feedforward control for the medium-voltage DC grid interface of photovoltaic systems. IEEE Access 7, 178094-178107 (2019) https://doi.org/10.1109/access.2019.2959040
  6. Liu, J., Wang, K., Zheng, Z., Li, Ch., Li, Y.: A dual-active-clamp quasi-resonant isolated boost converter for PV integration to medium-voltage DC grids. Emerg. Sel. Top. Power Electron. IEEE J. 8(4), 3444-3456 (2020) https://doi.org/10.1109/JESTPE.2019.2924145
  7. Li, X., Zhu, M., Su, M., Ma, J., Li, Y., Cai, X.: Input-independent and output-series connected modular DC-DC converter with intermodule power balancing units for MVdc integration of distributed PV. Power Electron. IEEE Trans. 35(2), 1622-1636 (2020) https://doi.org/10.1109/TPEL.2019.2924043
  8. Chen, W., Huang, A., Lukic, S., Svensson, J., Li, J., Wang, Z.: A comparison of medium voltage high power DC/DC converters with high step-up conversion ratio for offshore wind energy systems. In: Proceedings of the IEEE Energy Conversion Congress Exposition, pp. 584-589 (2011)
  9. Zhou, Y., Macpherson, D., Blewitt, W., Jovcic, D.: Comparison of DC-DC converter topologies for offshore wind-farm application. In: Proceedings of the International Conference on Power Electronics, Machines and Drives, pp. 1-6 (2012)
  10. Freijedo, F.D., Rodriguez-Diaz, E., Dujic, D.: Stable and passive high-power dual active bridge converters interfacing MVDC grids. IEEE Trans. Ind. Electron. 65(12), 9561-9570 (2018) https://doi.org/10.1109/tie.2018.2821108
  11. Hu, J., Joebges, P., Pasupuleti, G.C., Averous, N.R., De Doncker, R.W.: A maximum-output-power-point-tracking-controlled dual-active bridge converter for photovoltaic energy integration into MVDC grids. Energy Convers. IEEE Trans. 34(1), 170-180 (2019) https://doi.org/10.1109/TEC.2018.2874936
  12. Ibrahim, O., Yahaya, N.Z., Saad, N., Ahmed, K.Y.: Development of observer state output feedback for phase-shifted full bridge DC-DC converter control. IEEE Access 5, 18143-18154 (2017) https://doi.org/10.1109/ACCESS.2017.2745417
  13. Yang, X., Li, Y., Gao, Zh., Xi, L., Wen, J.: Analysis and design of full-bridge converter with a simple passive auxiliary circuit achieving adaptive peak current for ZVS and low circulating current. Emerg. Sel. Top. Power Electron. IEEE J. 9(2), 2051-2065 (2021) https://doi.org/10.1109/JESTPE.2020.2988281
  14. Zhou, Y., Huang, J., Huang, L., Zhang, Sh., Chen, G.: A hybrid ZVZCS full-bridge converter for DC microgrid. In: IEEE 9th International Power Electronics and Motion Control Conference, pp. 3355-3360 (2020)
  15. Wang, H., Ben, H., Zhou, D., Meng, T.: Research on the ZVZCS full bridge converter with current-double rectifier. In: IEEE Transportation Electrification Conference and Expo, Asia-Pacific, pp. 1-5 (2017)
  16. Mousavi, A., Das, P., Moschopoulos, G.: A comparative study of a new ZCS DC-DC full-bridge boost converter with a ZVS active-clamp converter. IEEE Trans. Power Electron. 27(3), 1347-1358 (2012) https://doi.org/10.1109/TPEL.2011.2118233
  17. Dincan, C., Kjaer, P., Chen, Y.: A high-power, medium-voltage, series-resonant converter for DC wind turbines. IEEE Trans. Power Electron. 33(9), 7455-7465 (2018) https://doi.org/10.1109/tpel.2017.2770220
  18. Shu, L., Chen, W., Ning, G., Cao, W., Mei, J., Zhao, J., Liu, Ch., He, G.: A resonant ZVZCS DC-DC converter with two uneven transformers for an MVDC collection system of offshore wind farms. IEEE Trans. Ind. Electron. 64(10), 7886-7895 (2017) https://doi.org/10.1109/TIE.2017.2694389
  19. Ning, G., Chen, W., Shu, L., Zhao, J., Cao, W., Mei, J., Liu, Ch.: A hybrid resonant ZVZCS PWM full-bridge converter for large photovoltaic parks connecting to MVDC grids. IEEE J. Emerg. Sel. Top. Power Electron. 5(3):1078-1090 (2017). https://doi.org/10.1109/JESTPE.2017.2651020
  20. Ning, G., Chen, W., Shu, L., Qu, X.: A hybrid ZVZCS dual-transformer-based full-bridge converter operating in DCM for MVDC grids. IEEE Trans. Power Electron. 32(7), 5162-5170 (2017) https://doi.org/10.1109/TPEL.2016.2604246