DOI QR코드

DOI QR Code

Power quality improvement of distribution power networks using capacitor-less H-bridge inverters for voltage regulation

  • Angamuthu, A. (Department of Electrical and Electronics Engineering, PSG College of Technology) ;
  • Sundaram, M. (Department of Electrical and Electronics Engineering, PSG College of Technology) ;
  • Balaji, V. (Department of Electrical and Electronics Engineering, PSG College of Technology)
  • Received : 2021.08.24
  • Accepted : 2021.12.17
  • Published : 2022.03.20

Abstract

These days FACTS devices are predominantly used to improve the power quality in distribution networks to meet the standards. The dynamic voltage restorer (DVR) plays a vital role in maintaining voltage in a distribution power substation at standard levels. DVRs can compensate a short period of sag or swell in a power network. Currently, many industries employ a servo-controlled voltage stabilizer at their premises to compensate voltage fluctuations and swells that occur for a longer period of time. Servo-controlled voltage stabilizers take about 20-30 power cycles to compensate fluctuation. The operation of sensitive equipment fails due to this inefficient compensation. This paper presents a solution for both voltage fluctuations and prolonged low voltage profiles at distribution networks. The proposed switching algorithm for the H-bridge inverter compensates grid voltage fluctuations by injecting compensating voltage without utilizing a DC bulk capacitor unlike a DVR. A prototype developed in the laboratory is tested experimentally and the obtained test results verify the extended feature of the proposed solution.

Keywords

References

  1. Bollen, M.H.J.: Understanding Power Quality Problems: Voltage Sags and Interruptions. IEEE Press, New York (2000)
  2. Jagadale, A., Patil, S., Kakade, S.: Digital Control for Three Phase Servo Stabilizer. LAP LAMBERT Academic Publishing, Saarbrucken (2016)
  3. Monti, A., Milano, F., Bompard, E., Guillaud, X.: ConverterBased Dynamics and Control of Modern Power Systems, pp. 91-124. Academic Press, New York (2021)
  4. Fernandes, D.A., Costa, F.F., Martins, J.R.S., Lock, A., Silva, E.R.C., Vitorino, M.A.: Sensitive load voltage compensation performed by a suitable control method. IEEE Trans. Ind. Appl. 53(5), 4877 (2017) https://doi.org/10.1109/TIA.2017.2715173
  5. Nielsen, J.G., Blaabjerg, F.: A detailed comparison of system topologies for dynamic voltage restorers. IEEE Trans. Ind. Appl. 41(5), 1272 (2005) https://doi.org/10.1109/TIA.2005.855045
  6. Vilathgamuwa, D., Wijekoon, H., Choi, S.S.: A novel technique to compensate voltage sags in multiline distribution system-the interline dynamic voltage restorer. IEEE Trans. Ind. Electron. 53(5), 1603 (2006) https://doi.org/10.1109/TIE.2006.882017
  7. Prasai, A., Divan, D.M.: Zero-energy sag correctors optimizing dynamic voltage restorers for industrial applications. IEEE Trans. Ind. Appl. 44(6), 1777 (2008) https://doi.org/10.1109/TIA.2008.2006318
  8. Jimichi, T., Fujita, H., Akagi, H.: Design and experimentation of a dynamic voltage restorer capable of significantly reducing an energy-storage element. IEEE Trans. Ind. Appl. 44(3), 817 (2008) https://doi.org/10.1109/TIA.2008.921425
  9. Jo, H., Lee, I., Han, B.M., Cha, H.: A dynamic voltage restorer with a selective harmonic mitigation and robust peak detection. In: 2013 Twenty Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 972-977 (2013)
  10. Barros, J.D., Silva, J.F.: Multilevel optimal predictive dynamic voltage restorer. IEEE Trans. Ind. Electron. 57(8), 2747 (2009) https://doi.org/10.1109/TIE.2009.2034172
  11. Ho, C.N., Chung, H.S.: Implementation and performance evaluation of a fast dynamic control scheme for capacitor-supported interline DVR. IEEE Trans. Power Electron. 25(8), 1975 (2010) https://doi.org/10.1109/TPEL.2010.2044587
  12. Kandil, T., Adel Ahmed, M.: Control and operation of dynamic voltage restorer with online regulated DC-link capacitor in microgrid system. Can. J. Electr. Comput. Eng. 43(4), 331 (2020) https://doi.org/10.1109/cjece.2020.3002855
  13. Ghosh, A., Jindal, A.K., Joshi, A.: Design of a capacitor-supported dynamic voltage restorer for unbalanced and distorted loads. IEEE Trans. Power Deliv. 19(1), 405 (2004) https://doi.org/10.1109/TPWRD.2003.820198
  14. Ho, C.N., Chung, H.S.H., Au, K.T.K.: Design and implementation of a fast dynamic control scheme for capacitor-supported dynamic voltage restorers. IEEE Trans. Power Electron. 23(1), 237 (2008) https://doi.org/10.1109/TPEL.2007.911780
  15. Meyer, C., De Doncker, R.W., Li, Y.W., Blaabjerg, F.: Optimized control strategy for a medium-voltage DVR-theoretical investigations and experimental results. IEEE Trans Power Electron. 23(6), 2746-2754 (2008). https://doi.org/10.1109/TPEL.2008.2002299
  16. Roncero-Sanchez, P., Acha, E.: Dynamic voltage restorer based on fying capacitor multilevel converters operated by repetitive control. IEEE Trans Power Delivery 24(2), 951-960 (2009). https://doi.org/10.1109/TPWRD.2008.2005885
  17. Ye, J., Gooi, H.B., Zhang, X., Wang, B., Pou, J.: Simplified four-level inverter-based dynamic voltage restorer with single dc power source. IEEE Access 7, 137461 (2019) https://doi.org/10.1109/access.2019.2941999
  18. Tu, C., Guo, Q., Jiang, F., Chen, C., Li, X., Xiao, F., Gao, J.: Dynamic voltage restorer with an improved strategy to voltage sag compensation and energy self-recovery. CPSS Trans. Power Electron. Appl. 4(3), 219 (2019) https://doi.org/10.24295/cpsstpea.2019.00021
  19. Kumar, C., Mishra, M.K.: Predictive voltage control of transformerless dynamic voltage restorer. IEEE Trans. Ind. Electron. 62(5), 2693 (2015) https://doi.org/10.1109/TIE.2014.2365753
  20. Jayaprakash, P., Singh, B., Kothari, D.P., Chandra, A., AlHaddad, K.: Control of reduced-rating dynamic voltage restorer with a battery energy storage system. IEEE Trans. Ind. Appl. 50(2), 1295 (2014) https://doi.org/10.1109/TIA.2013.2272669
  21. Bae, B., Jeong, J., Lee, J., Han, B.: Novel sag detection method for line-interactive dynamic voltage restorer. IEEE Trans. Power Deliv. 25(2), 1210 (2010) https://doi.org/10.1109/TPWRD.2009.2037520
  22. Torres, A.P., Roncero-Sanchez, P., Batlle, V.F.: A two degrees of freedom resonant control scheme for voltage-sag compensation in dynamic voltage restorers. IEEE Trans. Power Electron. 33(6), 4852 (2018) https://doi.org/10.1109/tpel.2017.2727488
  23. Benali, A., Khiat, M., Allaoui, T., Denai, M.: Power quality improvement and low voltage ride through capability in hybrid Wind-PV farms grid-connected using dynamic voltage restorer. IEEE Access 6, 68634 (2018) https://doi.org/10.1109/access.2018.2878493
  24. Tu, C., Guo, Q., Jiang, F., Wang, H., Shuai, Z.: A comprehensive study to mitigate voltage sags and phase jumps using a dynamic voltage restorer. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1490 (2020) https://doi.org/10.1109/jestpe.2019.2914308