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Abstract
In this paper, we propose a change point detection procedure based on the modified information criterion in

a generalized lambda distribution (GLD) model. Simulations are conducted to obtain empirical critical values
of the proposed test statistic. We have also conducted simulations to evaluate the performance of the proposed
methods comparing to the log-likelihood method in terms of power, coverage probability, and confidence sets.
Our results indicate that, under various conditions, the proposed method modified information criterion (MIC)
approach shows good finite sample properties. Furthermore, we propose a new goodness-of-fit testing procedure
based on the energy distance to evaluate the asymptotic null distribution of our test statistic. Two real data
applications are provided to illustrate the use of the proposed method.
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1. Introduction

Pearson (1985) gave a four-parameter system of probability density functions and fitted the parame-
ters by the method of moments (MME). Tukey (1960) proposed one-parameter lambda distribution.
Tukey’s lambda was generalized, for the purpose of generating random variables for Monte Carlo
simulation studies, to the four-parameter generalized lambda distribution (GLD), by Ramberg and
Schmeiser (1972) and Ramberg and Schmeiser (1974). Ramberg et al. (1979) developed a four-
parameter model together with the necessary tables for fitting a wide variety of curves. Since the
early 1970s, the GLD has been applied in many fields of endeavor with continuous probability den-
sity functions. The generalized lambda distribution family with four parameters λ1, λ2, λ3, and λ4,
denoted by GLD(λ1, λ2, λ3, λ4), has the density function,

f (x) =
λ2

λ3yλ3−1 + λ4(1 − y)λ4−1 , at x = Q(y), (1.1)

where Q(y) is the percentile function defined as

Q(y) = λ1 +
yλ3 − (1 − y)λ4

λ2
, (1.2)
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where 0 ≤ y ≤ 1. The λ1 and λ2 are the location and scale parameter respectively. Further, λ3 and λ4
determine the skewness and kurtosis. We note there that not all choices of λ1, λ2, λ3, λ4 lead to a valid
distribution, as described in the following theorem.

Theorem 1. The GLD(λ1, λ2, λ3, λ4) specifies a valid distribution if and only if

g(y, λ3, λ4) ≡ λ3yλ3−1 + λ4(1 − y)λ4−1, (1.3)

has the same sign for all y in [0, 1], as long as, λ2, takes that sign. In particular, the GLD(λ1, λ2, λ3, λ4)
specifies a valid distribution if λ2, λ3, λ4 all have the same sign.

More details for GLD family refer to Karian and Dudewicz (2000). This paper is organized as follows.
In Section 2, we develop the change point detection procedure for the GLD model based on the MIC
and provides preliminaries on how to construct a confidence curve and confidence set for the specified
level. The simulation results are presented in Section 3. Our new method for the goodness-of-fit of the
asymptotic null distribution of S n is discussed in Section 4. Two real data applications are provided
in Section 5. The summary of the results and some discussion are given in Section 6.

2. Methodology

2.1. Modified information approach

In this section, we use the modified information approach (MIC) to detect changes in a GLD model.
Chen et al. (2006) proposed the MIC as a the modification of the BIC approach by emphasizing the
model complexity in the context of change point problems to include the contribution of the location
of the change point.

In general, we consider multiple changes in the data set. Vostrikova (1981) proposed the binary
segmentation method which could detect multiple structural changes recursively at most one change
point at each step. In the first step, this method allows us to scan the whole data set by testing the null
hypothesis of no change versus the alternative hypothesis of having one change. Once the first change
(if there is any) has been located, the data is divided to two subsequences which are before the change
point and after the change point. Then the second step is to repeat the same scanning procedure in
Step 1 to these two subsequences respectively by assuming at most one change in each subsequence.
Such a process will be repeated until there will be no further subsequences having change points. By
doing so, we can find all the possible changes as well as estimate their locations. She also showed
that the binary segmentation procedure is consistent. In particular, the multiple change point problem
may be viewed as a single problem along with the binary segmentation procedure. Therefore, in this
paper, we establish the testing procedure for a single change point detection method, however, it can
be easily generalised to multiple change point problem, if needed.

Let X1, . . . , Xn be a sequence of independent random variables from a GLD model with parame-
ters, (

λ(1)
1 , λ(1)

2 , λ(1)
3 , λ(1)

4

)
,
(
λ(2)

1 , λ(2)
2 , λ(2)

3 , λ(2)
4

)
, . . . ,

(
λ(n)

1 , λ(n)
2 , λ(n)

3 , λ(n)
4

)
.

We are interested in testing the changes in all parameters simultaneously. Thus, we would like to test
the hypotheses are,

H0 : λ(1)
i = λ(2)

i = · · · = λ(n)
i , i = 1, 2, 3, 4, (2.1)
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versus,

H1 : λ(1)
i = λ(2)

i = · · · = λ(k)
i , λ

(k+1)
i = · · · = λ(n)

i , i = 1, 2, 3, 4, (2.2)

where 1 ≤ k < n. Then we can define the modified information criteria MIC(n) under H0 and MIC(k)
under H1 respectively according to Chen et al. (2006) as follows,

MIC(n) = −2 ln LH0

(
λ̂1, λ̂2, λ̂3, λ̂4

)
+ 4 log(n),

= −2
[
n log

(
λ̂2

)
−

n∑
i=1

log
(
λ̂3yλ̂3−1

1 + λ̂4(1 − yi)λ̂4−1
)]

+ 4 log(n), (2.3)

MIC(k) = −2 ln LH1

(
λ̂(1)

1 , λ̂(1)
2 , λ̂(1)

3 , λ̂(1)
4 , λ̂(n)

1 , λ̂(n)
2 , λ̂(n)

3 , λ̂(n)
4

)
+

8 +

(
2k
n
− 1

)2
 log(n),

= −2

n log
(
λ̂(1)

2

)
+ (n − k) log

(
λ̂(n)

2

)
−

k∑
i=1

log
(
λ̂(1)

3 y
λ̂(1)

3 −1
1 + λ̂(1)

4 (1 − yi)λ̂
(1)
4 −1

)
−

n∑
i=k+1

log
(
λ̂(n)

3 y
λ̂(n)

3 −1
1 + λ̂(n)

4 (1 − yi)λ̂
(n)
4 −1

) +

8 +

(
2k
n
− 1

)2
 log(n), (2.4)

where λ̂is, i = 1, 2, 3, 4 are MLEs under H0, and λ̂(1)
i , λ̂(n)

i , i = 1, 2, 3, 4 are MLEs under H1 which
are estimated by R package GLDEX (Su, 2016). Let k be the possible change location in the range of
1 ≤ k < n. Then we accept H0 if,

MIC(n) ≤ min
1≤k<n

MIC(k), (2.5)

which indicates there is no change point in the data set, and we reject H0 if

MIC(n) > min
1≤k<n

MIC(k), (2.6)

which indicates that there exists a change point in the data set. Consequently we can estimate the
change point location k̂ by

MIC
(
k̂
)

= min
1≤k<n

MIC(k). (2.7)

Further, we define the test statistic S n based on MIC(n) and MIC(k) to test the null hypothesis of
no change versus the alternative hypothesis of one change as follows,

S n = MIC(n) − min
1≤k<n

MIC(k) + 4 log(n). (2.8)

We reject the null hypothesis for a sufficiently large value of S n. The standardization term 4 log(n)
removes the constant term in the difference of MIC(n) and MIC(k).

2.2. Confidence distribution, profile log-likelihood and deviance functions

Confidence distributions (CD) are distribution estimates to be interpreted as distributions of epistemic
probabilities. The concept of a CD is similar to a point estimator and it can be referred to as a sample-
dependent distribution that can represent confidence intervals of all levels for a parameter of interest.
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A formal definition of CD can be found in Schweder and Hjort (2002). Furthermore, Schweder and
Hjort (2016) systematically studied the theoretical properties of the CD. A detailed analysis of recent
developments of CD has been given by Xie and Singh (2013). More applications of the CD can
be found in the literature, including bootstrap distributions, p-value functions, normalized likelihood
functions, and Bayesian posteriors, among others, Schweder and Hjort (2002), Singhet al. (2005),
Singhet al. (2007), Singh and Xie (2012), and Shen et al. (2018).

The CD for change point analysis has been investigated by Cunen et al. (2018) and they construct
confidence curves for change locations using the log-likelihood approach. Ratnasingam and Ning
(2020) studied the change point detection procedure based on the CD combining with the MIC to
construct the confidence set for the change estimate for a skew normal change point model. They
also investigated the confidence distribution for detecting and estimating changes in a three-parameter
Weibull distribution (Ratnasingam and Ning, 2021). In this paper, we study the CD-based detection
procedure along with MIC for a GLD change point model. Next, we describe a procedure to construct
a confidence curve for a four-parameter GLD change point model.

Suppose X1, . . . , Xk be a sequence of independent random variables with the density function
f (x,ΘL) and Xk+1, . . . , Xn coming from the population with the density function f (x,ΘR). Now the
log-likelihood function is defined as

`(k,ΘL,ΘR) =

k∑
i=1

log ( f (xi,ΘL)) +

n∑
i=k+1

log ( f (xi,ΘR)) , (2.9)

where ΘL and ΘR are the parameter space of the pre-change and post-change distributions respectively.
By maximizing the log-likelihood function above of a given k, we can obtain the profile log-likelihood
function as follows.

`prof(k) = max
ΘL,ΘR

(`(k,ΘL,ΘR)) = `
(
k, Θ̂L, Θ̂R

)
, (2.10)

where Θ̂L and Θ̂R are MLEs of ΘL and ΘR respectively. The estimated change point location k̂ corre-
sponds to the max

k
(`prof(k)). The deviance function is defined as

D(k, x) = 2
[
`prof(k̂) − `prof(k)

]
, (2.11)

where x = (x1, x2, . . . , xn). The confidence curve for k based on the deviance function can be obtained
through simulation.

cc(k, xobs) = ϕk (D(k, xobs)) = Pk,Θ̂L,Θ̂R
(D(k, x) < D(k, xobs)) . (2.12)

where the cc(k, xobs) < α under the true value of k. By simulation, we compute

cc (k, xobs) =
1
B

B∑
j=1

I
(
D

(
k, x∗j

)
< D (k, xobs)

)
, (2.13)

for a large number of B of simulated copies of dataset xobs. For each possible value of k, we simulated
data x∗j , j = 1, . . . , B from f (x,ΘL) and f (x,ΘR) to the left and right side of k, respectively. Further-
more, the change point location is estimated by (2.7). More precisely, our approach depends on the
location of the change point. This approach is different from the method used in Cunen et al. (2018).
For more details, we refer the readers to Cunen et al. (2018) and Ratnasingam and Ning (2020).
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3. Simulation results

In this section, due to the difficulty in deriving its the analytic properties, we use simulations to
investigate the critical values and the performance of the proposed test statistic S n .

3.1. Critical values

We now describe how to obtain empirical critical values for our test statistic S n, and for Tn, the test
statistics proposed by Ning and Gupta (2009), who considered the classical Bayesian information
criterion (BIC) to detect multiple changes in a GLD model, and then compare the performances their
performances.

Tn = BIC(n) − min
1≤k<n

BIC(k) + 4 log n, (3.1)

where BIC(n) under H0 and BIC(k) under H1 are given by

BIC(n) = −2 ln LH0

(
λ̂1, λ̂2, λ̂3, λ̂4

)
+ 4 log(n), (3.2)

BIC(k) = −2 ln LH1

(
λ̂(1)

1 , λ̂(1)
2 , λ̂(1)

3 , λ̂(1)
4 , λ̂(n)

1 , λ̂(n)
2 , λ̂(n)

3 , λ̂(n)
4

)
+ 8 log n. (3.3)

The major difference between S n and Tn is that the penalty term in the MIC(k) incorporates the
contribution of the location of the change point k associated with the complexity of the model, which
is not accounted for by the BIC(k). In order to make a fair power comparison between S n and Tn,
we simulate the critical values for both test statistics under the same null distributions with the same
sample sizes for given significance levels.

There are two general approaches available to compute critical values. They are simulation-and
bootstrap-based approaches. The simulation-based approach requires the estimation of the test statis-
tics values S n and Tn under the null hypothesis of a certain number of repetitions, and critical values
are equal to the percentiles of the sorted values of the test statistics from the simulations. The sec-
ond method uses the bootstrap to obtain the asymptotic critical values for the test statistics. In this
method, a certain number of samples are drawn from a null distribution with replacement over and
over again from a null distribution. These are called bootstrap samples. The critical values for a given
significance level correspond to the percentiles of sorted test statistics values.

When using the bootstrap method to obtain simulated critical values of a test statistic, we need
to ensure that the bootstrap samples are re-sampled from data under the null distribution. In the
simulation-based approach, however, the distribution under the null hypothesis has been determined
before re-sampling. Therefore, it is known to satisfy H0 which can be used to generate a sample.
Thus, in simulations, both approaches will obtain similar critical values. However, for real data,
it would be an issue for the bootstrap method since we do not know whether the data satisfies H0
or H1. Therefore, we can’t perform re-sampling directly on the data. The following strategy will
be taken. We first assume the data satisfying H0, which indicates it should be fitted by a single
GLD, GLD0 = GLD(λ̂1, λ̂2, λ̂3, λ̂4), where λ̂i, i = 1, 2, 3, 4 can be obtained by R package GLDEX.
Then we generate a random sample based on GLD0 denoted by x1, x2, . . . , xn. Bootstrap samples are
drawn from this generated sample with replacement, denoted by y(i)

1 , y
(i)
2 , . . . , y

(i)
n , i = 1, 2, . . . , B. For

each bootstrap sample, we calculate S n denoted by S (i)
n , i = 1, 2, . . . , B. Thus, the p-value can be

approximated as follows

P-value =
1
B

B∑
i=1

I
(
S (i)

n ≥ S (∗)
n

)
,
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Table 1: Critical values of S n and Tn

n Method α
0.01 0.05 0.1

50 S n 13.2672 15.6640 19.0798
Tn 9.3552 11.7520 15.1678

60 S n 12.5919 14.5480 18.9868
Tn 8.4976 10.4537 14.8925

80 S n 11.2876 13.1865 18.5648
Tn 6.9056 8.8045 14.1827

100 S n 11.4198 13.6665 17.8261
Tn 6.8146 9.0613 13.2209

150 S n 9.6414 11.5773 15.7964
Tn 4.6307 6.5666 10.7858

Table 2: Power comparison between MIC and BIC for α = 0.05

n k Model (λ(n)
1 , λ(n)

2 , λ(n)
3 , λ(n)

4 )
(2.5, 1.5, 0.69, 0.69) (3, 2, 1.19, 1.19) (4, 3, 2.19, 2.19)

50

10 MIC 0.796 0.882 0.930
BIC 0.726 0.874 0.926

15 MIC 0.862 0.930 0.960
BIC 0.840 0.924 0.950

25 MIC 0.952 0.988 0.976
BIC 0.934 0.988 0.972

100

15 MIC 0.892 0.972 0.998
BIC 0.882 0.968 0.996

25 MIC 0.914 0.982 1.000
BIC 0.908 0.978 0.998

50 MIC 0.972 0.992 1.000
BIC 0.964 0.992 1.000

150

35 MIC 0.948 0.980 1.000
BIC 0.938 0.978 1.000

50 MIC 0.974 0.998 1.000
BIC 0.972 0.998 1.000

75 MIC 0.994 1.000 1.000
BIC 0.986 1.000 1.000

where I(·) is the indicator function and S (∗)
n is the value of S n calculated from the original real data.

3.2. Critical values of S n and Tn

In our simulation study, we set up the null distribution to be GLD(2, 1, 0.19, 0.19) and choose sample
sizes n = 50, 60, 80, 100, 150 with significance levels α = 0.01, 0.05, 0.1. We obtain the empirical
critical values for S n (2.1) and Tn (3.1) through the simulations as follows,

Step 1: We generate data with various sample sizes n = 50, 60, 80, 100, 150 from GLD(2, 1, 0.19, 0.19).

Step 2: For each generated sample, we calculate S n and Tn respectively.

Step 3: We repeat the above steps M = 1,000 times. Then the corresponding percentiles of these S n

and Tn values are the critical values at give significance level α = 0.01, 0.05, and 0.1.

The empirical critical values are provided in Table 1.
We should note here that, for the real data application, we should follow the bootstrap method

proposed in Section 3.1 to calculate the p-value since whether the true distribution of the data satisfies
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Table 3: Coverage probability comparison between MIC and log-likelihood methods

n k α
(λ(n)

1 , λ(n)
2 , λ(n)

3 , λ(n)
4 )

(2.5, 1.5, 0.69,0.69) (3,2, 1.19,1.19) (4,3,2.19,2.19)
MIC loglik MIC loglik MIC loglik

50

10

0.50 0.38 0.35 0.40 0.38 0.45 0.42
0.90 0.80 0.78 0.88 0.87 0.90 0.88
0.95 0.86 0.84 0.93 0.92 0.95 0.95
0.99 0.98 0.96 0.99 0.98 0.99 1.00

15

0.50 0.42 0.39 0.42 0.40 0.52 0.52
0.90 0.82 0.82 0.89 0.88 0.91 0.90
0.95 0.91 0.89 0.95 0.94 0.95 0.95
0.99 0.98 0.98 0.99 0.98 1.00 0.99

25

0.50 0.46 0.44 0.44 0.43 0.52 0.52
0.90 0.88 0.87 0.89 0.89 0.89 0.89
0.95 0.93 0.92 0.95 0.94 0.95 0.95
0.99 0.98 0.98 1.00 0.99 0.99 1.00

100

15

0.50 0.44 0.42 0.49 0.48 0.53 0.521
0.90 0.83 0.80 0.89 0.86 0.89 0.88
0.95 0.89 0.87 0.94 0.91 0.93 0.92
0.99 0.96 0.95 0.99 0.97 0.99 0.99

25

0.50 0.48 0.47 0.49 0.48 0.53 0.53
0.90 0.88 0.85 0.90 0.89 0.91 0.90
0.95 0.93 0.91 0.95 0.93 0.95 0.94
0.99 0.97 0.98 0.99 0.99 1.00 0.99

50

0.50 0.48 0.47 0.51 0.50 0.54 0.55
0.90 0.89 0.87 0.91 0.88 0.90 0.91
0.95 0.95 0.94 0.96 0.94 0.96 0.95
0.99 0.98 1.00 1.00 0.99 0.99 0.99

150

35

0.50 0.49 0.47 0.51 0.50 0.57 0.56
0.90 0.88 0.86 0.89 0.87 0.90 0.88
0.95 0.93 0.91 0.94 0.92 0.95 0.95
0.99 0.98 0.99 0.99 0.99 0.99 1.00

50

0.50 0.50 0.49 0.55 0.54 0.58 0.57
0.90 0.88 0.86 0.90 0.89 0.91 0.91
0.95 0.94 0.93 0.95 0.94 0.95 0.95
0.99 0.97 0.95 0.99 0.98 0.99 1.00

75

0.50 0.53 0.51 0.58 0.56 0.58 0.58
0.90 0.89 0.88 0.91 0.90 0.93 0.93
0.95 0.94 0.93 0.95 0.94 0.96 0.95
0.99 0.99 0.99 0.99 0.99 1.00 1.00

H0 or H1 is unknown.
In this subsection, we provide results of the simulation study for the coverage probability, confi-

dence sets, and consistency of the change point estimator. Three different sample sizes n = {50, 100,
150} are considered and each with various change point locations. For instance, sample size n = 50,
the change point positions are set to k = 10, 15, and 25. The pre-change data are obtained from
GLD(2, 1, 0.19, 0.19). One method is considered better than other methods if it produces thinner
confident sets and retaining the right coverage for a given test level.

3.3. Power comparison

In this section, we conducted simulations under different scenarios to investigate the performance
of test procedures based S n and Tn in terms of power. We set up the distribution before change to
be GLD(2, 1, 0.19, 0.19), and the distribution after the change to be GLD(λ(n)

1 , λ(n)
2 , λ(n)

3 , λ(n)
4 ) with

various values listed in Table 2.
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Table 4: Average size comparison between MIC and log-likelihood methods

n k α
(λ(n)

1 , λ(n)
2 , λ(n)

3 , λ(n)
4 )

(2.5, 1.5, 0.69, 0.69) (3, 2, 1.19, 1.19) (4, 3, 2.19, 2.19)
loglik MIC loglik MIC loglik MIC

50

10

0.50 7.556 7.342 3.390 3.074 2.936 2.810
0.90 9.554 9.398 3.990 3.320 3.246 3.134
0.95 10.692 10.606 4.430 3.990 3.906 3.758
0.99 13.794 12.734 5.686 4.634 4.368 4.146

15

0.50 6.774 6.526 2.996 2.620 2.788 2.584
0.90 8.436 8.282 3.450 2.838 2.882 2.674
0.95 9.462 9.364 3.902 3.604 3.566 3.350
0.99 11.666 11.212 4.922 4.310 3.950 3.742

25

0.05 5.084 4.514 2.994 2.836 2.276 2.136
0.90 6.852 6.338 3.422 3.392 2.366 2.242
0.95 7.930 7.340 3.874 3.600 2.442 2.328
0.99 8.828 8.112 4.834 4.772 2.968 2.726

100

15

0.50 6.878 6.100 2.828 2.628 2.546 2.460
0.90 8.488 8.282 3.668 3.466 2.604 2.564
0.95 9.414 8.852 4.144 3.928 2.694 2.250
0.99 11.960 11.640 5.052 4.436 3.386 2.918

25

0.50 4.986 4.810 2.392 2.096 2.230 2.166
0.90 6.414 6.372 2.666 2.366 2.398 2.208
0.95 7.250 6.814 3.120 2.840 2.516 2.268
0.99 9.576 8.802 3.954 3.604 2.846 2.738

50

0.50 4.202 4.166 2.288 2.134 2.126 2.070
0.90 5.616 5.310 2.538 2.340 2.354 2.214
0.95 6.540 6.108 3.032 2.894 2.412 2.360
0.99 7.882 7.312 3.800 3.674 2.614 2.592

150

35

0.50 3.506 2.736 2.570 2.192 2.440 2.210
0.90 4.884 4.064 2.898 2.728 2.574 2.340
0.95 5.750 4.888 3.034 2.812 2.826 2.580
0.99 7.972 6.950 3.808 3.596 3.468 2.874

50

0.50 2.524 2.288 2.268 2.146 2.218 2.122
0.90 3.910 3.618 2.746 2.522 2.240 2.194
0.95 4.716 4.480 2.842 2.766 2.774 2.476
0.99 6.880 6.562 3.584 3.428 2.946 2.712

75

0.50 2.836 2.164 2.212 2.046 2.134 1.898
0.90 4.162 3.710 2.494 2.254 2.358 2.234
0.95 4.744 4.580 2.804 2.528 2.592 2.392
0.99 5.514 5.102 3.384 3.136 2.878 2.650

Further, various sample sizes n = {50, 100, 150} and different change point locations have been con-
sidered under each sample sizes. We consider the change point locations where τ positions {10, 15, 25}
for sample size n = 50, {15, 25, 50} for sample size n = 100, and {35, 50, 75} for sample size n = 150.
Note that the cases {40, 35, 25} for sample size n = 50, and {85, 75, 50} n = 100, and {155, 100, 75}
for sample size n = 150 are fully symmetrical and thus they have the same power, coverage proba-
bility, and average size. Our test statistics (2.1) and (3.1) correspond to the MIC and BIC procedures
respectively. The critical values at a given significance level are obtained through the simulations
proposed in Section 3.2. The simulations results are recorded in Table 2.

Regardless of the method used for the power calculations, the power of the test increases as the
sample size becomes larger. Moreover, it appears that the MIC based method gives larger power
compared to the BIC based method. This may be due to that MIC method depends on the location of
the change point. We also notice that the power of the test increases as the differences between the
parameters increases.
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Table 5: The consistency of change location estimator k̂

δ n k P(|k̂ − k| ≤ δ) Bias(k̂) MSE(k̂)
MIC BIC MIC BIC MIC BIC

1

50 12 0.851 0.854 0.205 0.182 0.205 0.182
25 0.870 0.860 0.187 0.194 0.187 0.194

100 25 0.883 0.879 0.196 0.199 0.196 0.199
50 0.887 0.886 0.206 0.205 0.206 0.205

150 37 0.914 0.887 0.201 0.185 0.201 0.185
75 0.910 0.909 0.173 0.173 0.173 0.173

200 50 0.895 0.910 0.191 0.199 0.191 0.199
100 0.913 0.913 0.210 0.210 0.210 0.210

300 75 0.892 0.904 0.169 0.196 0.169 0.196
150 0.910 0.910 0.223 0.223 0.223 0.223

2

50 12 0.922 0.923 0.347 0.320 0.489 0.458
25 0.940 0.930 0.327 0.334 0.467 0.474

100 25 0.956 0.952 0.342 0.345 0.488 0.491
50 0.957 0.955 0.346 0.343 0.486 0.481

150 37 0.972 0.956 0.317 0.323 0.433 0.461
75 0.969 0.969 0.291 0.293 0.409 0.413

200 50 0.966 0.962 0.333 0.303 0.475 0.407
100 0.961 0.961 0.306 0.306 0.402 0.402

300 75 0.964 0.966 0.303 0.320 0.457 0.444
150 0.975 0.975 0.353 0.353 0.483 0.483

3

50 12 0.962 0.965 0.467 0.446 0.849 0.836
25 0.966 0.961 0.405 0.427 0.701 0.753

100 25 0.973 0.976 0.393 0.417 0.641 0.707
50 0.979 0.979 0.412 0.415 0.684 0.697

150 37 0.985 0.981 0.356 0.398 0.550 0.686
75 0.988 0.988 0.348 0.350 0.580 0.584

200 50 0.988 0.989 0.399 0.384 0.673 0.650
100 0.987 0.987 0.384 0.384 0.636 0.636

300 75 0.985 0.981 0.376 0.365 0.646 0.579
150 0.989 0.989 0.395 0.395 0.609 0.609

3.4. Coverage probability, confidence sets & consistency of the estimator k̂ comparison

First, we examine the coverage probabilities when the method has the exact right coverage for the
specified level. We compare our method, the MIC based method, with the log-likelihood based
approach proposed in Cunen et al. (2018). The simulation results are listed in Table 3 for when
α = {0.50, 0.90, 0.95, 0.99}. The performance of the MIC based method outperforms the log-
likelihood based method in all cases. However, both methods provide slightly over coverage for a
level α = 0.5 and this is more apparent as the sample size and the difference among the parameters
increase. For example, sample size n = 100, the change point location k = 15 with the post-change
distribution GLD(2.5, 1.5, 0.69, 0.69) and test level α = 0.90 the coverage level based on MIC
method is 0.79 as compared to the log-likelihood based method which gives only 0.74.

Next, we compute the average sizes of confidence sets for MIC and log-likelihood based meth-
ods. The results are summarized in Table 4. It can be seen that the MIC based method gives smaller
confidence sets compared to the log-likelihood based approach proposed in Cunen et al. (2018). We
observe that the size of the confidence set becomes smaller when the difference between the pa-
rameters increases. For example, for n = 50, test level α = 0.5, and the post-change distribution
GLD(2.5, 1.5, 0.69, 0.69) the average length of the confidence set based on MIC is equal to 7.342,
however, the log-likelihood based approach provides slightly large confidence set which average
length is 7.556.
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We also investigate the consistency of the estimator k̂ of the actual change location k through a
numerical study. The difference between the estimated location and the actual change point location
is set to δ. Further, we compute the bias and mean squared error (MSE) as well. Table 5 summarizes
the simulation results below. It can be concluded from the simulations that the P(|k̂MIC − k| ≤ δ) is
greater than P(|k̂BIC − k| ≤ δ). However, the difference between these two probabilities decreases as
the sample size n increases.

4. Goodness-of-fit test for S nS nS n

According to Chen et al. (2006), under certain conditions, the asymptotic null distribution of the
proposed test statistic S n is the χ2-distribution with d degrees of freedom, where d is the number
of parameters in the null model. In this section, we develop a Goodness-of-fit test to evaluate the
asymptotic null distribution of S n using the energy distance.

Energy distance, as described in Székely (2000), is defined to be the statistical distance between
probability distributions. The associated statistics, named energy statistics, are the function of energy
distances. The concept is motivated by Newton’s gravitational potential energy which is a function
of the distance between two objects. Thus the idea of energy statistics is to consider statistical obser-
vations as heavenly bodies governed by a statistical potential energy,which is zero if and only if an
underlying statistical null hypothesis is true. Székely and Rizzo (2013) defined the energy distance
E(X,Y) between two independent d-dimensional random variables X and Y is computed by

E(X,Y) = 2E||X − Y ||d − E
∣∣∣∣∣∣X − X

′
∣∣∣∣∣∣

d − E
∣∣∣∣∣∣Y − Y

′
∣∣∣∣∣∣

d , (4.1)

provided E|X|, E|Y | < ∞. Here X
′

is and i.i.d copy of X and Y
′

is an i.i.d copy of Y . E(X,Y) ≥ 0
and E(X,Y) = 0 if and only if X d

= Y . There have been numerous studies based on the energy
distance. For example, Székely and Rizzo (2005) proposed a test based on the energy distance for
multivariate normality. Rizzo (2009), Yang (2012), and Rizzo and Haman (2016) considered one-
sample goodness-of-fit tests for Pareto distributions, Univariate stable distributions and asymmetric
Laplace distributions based on the energy distance. Székely and Rizzo (2004) constructed an energy-
distance-based test for testing equality of distributions under high dimensional settings. Baringhaus
and Franz (2004) also proposed a new multivariate two-sample test based on energy distance. Kim
et al. (2009) and Matteson and James (2014) studied change point problems incorporating the energy
distance. In the univariate case, d = 1, the energy distance (4.1) becomes,

E(X,Y) = 2E|X − Y | − E
∣∣∣X − X

′
∣∣∣ − E

∣∣∣Y − Y
′
∣∣∣ .

Then the one-sample energy statistic for the goodness-of-fit test based on the energy distance is
given by the following definition.

Definition 1. Let X1, . . . , Xn be a random sample from a univariate population with distribution F
and let x1, . . . , xn be the observed values of the random variables in the sample. Then the single
sample energy statistic for testing the hypotheses H0 : F = F0 vs H1 : F , F0 is

Ψn = nEn (x1, . . . , xn, X) = n

2
n

n∑
i=1

E |xi − X| − E
∣∣∣X − X

′
∣∣∣ − 1

n2

n∑
i=1

n∑
j=1

∣∣∣xi − x j

∣∣∣ . (4.2)

where X and X′ are independent and identically distributed with distribution F0 and the expectations
are taken with respect to the null distribution F0.



MIC for change detection in GLD 311

As we mentioned earlier, according to Chen et al. (2006), the S n defined in (2.1) follows the χ2
4

distribution. Thus, our testing hypothesis becomes H0 : F = χ2
4 vs H1 : F , χ2

4. Therefore, we
only need to derive the energy statistics formula for the χ2

4 distribution.

Theorem 2. Let Y ∼ χ2
4, then for any fixed x ∈ R

E |x − Y | = 2xFY (x) − x − EY −
(
4 −

1
2

e−
y
2 [x(x + 4) + 8]

)
.

Proof:

E|x − Y | =
∫

x≤y
(x − y) fY (y)dy +

∫
x>y

(y − x) fY (y)dy

= x (2FY (x) − 1) − E(Y) + 2
∫ ∞

x
y fY (y)dy

= x (2FY (x) − 1) − E(Y) − 2
∫ x

−∞

y fY (y)dy

= x (2FY (x) − 1) − E(Y) − 2
∫ x

0
y

1
22Γ(2)

y
4
2−1e−

y
2 dy

= 2xFY (x) − x − EY −
(
4 −

1
2

e−
x
2 [x(x + 4) + 8]

)
�

Theorem 3. Let X and X
′

be independent identically distributed random variables. Then

E
∣∣∣X − X

′
∣∣∣ ≈ 4

n

n∑
i=1

yiF−1
X (yi) −

2
n

n∑
i=1

F−1
X (yi),

where F−1
X is the inverse CDF of X, n is the number of equally sized sub-intervals of [0, 1] and yi is

chosen from the ith sub-interval.

The proof of Theorem 3 is similar to Rizzo and Haman (2016). Thus, details are omitted to conserve
space. According to Rizzo (2002), the last term of the (4.2) can be written as,

1
n2

n∑
i=1

n∑
j=1

∣∣∣xi − x j

∣∣∣ =
2
n2

n∑
k=1

(2k − 1 − n) y(k), (4.3)

where y(1) ≤ y(1) ≤ · · · ≤ y(n) is the ordered sample. Hence, the one sample energy statistic based on
Definition 1 can be re-written as follows.

Ψn = nEn(x1, . . . , xn, X) = n

2
n

n∑
i=1

2xiFY (xi) − xi − EX −
[
4 −

1
2

e−
xi
2 [xi(xi + 4) + 8]

]

−

 4
n∗

n∗∑
i=1

yiF−1
X (yi) −

2
n∗

n∗∑
i=1

F−1
X (yi)

 − 1
n2

n∑
i=1

n∑
j=1

∣∣∣xi − x j

∣∣∣ . (4.4)
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Figure 1: The Chi-square Q-Q plot for S n values.

where n∗ is the number of equally sized sub-intervals of [0, 1] and yi is chosen to be in the ith sub-
interval. The one sample energy goodness-of-fit test statistic procedure is described below,

1. Generate a data x1, x2, . . . , xn from the χ2
4 distribution.

2. Compute the energy statistics of the data x1, x2, . . . , xn using the formula (4).

3. Repeat Steps 1 & 2 for 5000 times and obtain Ψ
(1)
n ,Ψ(2)

n , . . . ,Ψ(5000)
n .

4. The critical value can be obtained by finding a 95% quantile of the energy statistics.

5. Simulate S n values using the equation (2.1) and denote them as S (1)
n , S (2)

n , . . . , S (B)
n .

6. Compute the energy statistic of the data S (1)
n , S (2)

n , . . . , S (B)
n .

7. Compare the energy statistic in Step 6 with the critical value found in Step 4, if the critical value
exceeds the energy statistic, we conclude that S n values come from χ2

4 distribution otherwise not.

We follow the above procedure to conduct the one sample energy goodness-of-fit test statistic. The
critical value at 5% significance is 9.5037. The energy statistic for the S n data is 11.60781 so we reject
the null hypothesis at 5% significance level. This suggests that the asymptotic null distribution of S n

does not follow a χ2
4 distribution. Below we construct the Chi-Square Q-Q plot for S n test statistic

values.
Figure 1 shows that there is a significant deviation from the reference line. This confirms our

previous results, that the asymptotic null distribution of S n does not follow a χ2
4 distribution. Thus,

the MIC statistic derived from the GLD change point model does not comply with the asymptotic
properties established in Chen et al. (2006).
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Figure 2: (a): Confidence curve for the data 1 ≤ i ≤ 262 the change point at k̂ = 87, (b): Confidence curve for the
fist subset below (k ≤ 87), the change point at k̂ = 57, (c): Confidence curve for the sequence 88 ≤ i ≤ 262 the
change point at k̂ = 240, and (d): Confidence curve for the sequence 241 ≤ i ≤ 262 the change point at k̂ = 254.

5. Application

In this section, the proposed method is applied to analyze two stock market returns data from the
Brazilian and Chilean markets. These data sets were previously used in the literature Ngunkeng and
Ning (2014), Ratnasingam and Ning (2020). We assume that changes occur simultaneously across all
four parameters. The stock return ratio is obtained through the following transformation.

Rt =
Pt+1 − Pt

Pt
, t = 1, 2, . . . , n − 1.

5.1. Brazilian market return ratio data

In order to identify multiple changes and to create the appropriate confidence sets, we use the pro-
posal method along with binary segmentation procedure. First, MIC(262) = −807.3228. Then the
min1≤k<262 MIC(k) = MIC(87) = −824.2035. Thus the estimated change point location k̂ = 87, which
corresponds to the 88th location in the data set. The MLEs of the pre-change parameters and post-
change parameters are (0.0089, 64.4382, 0.0156,−0.0085) and (0.0010, 32.8107,−0.0777,−0.0389)
respectively and the 95% confidence set for the change point estimate is {87, 88, 89}. We then split the
data sets into two subsets which are below k(≤ 87) and above k(> 87), then the proposed method is
applied recursively in each subset in order to detect all changes in the data sets. This iterative process
stops until there are no further changes detected. In particular, all the change points are obtained from
our procedure {58, 88, 144, 240, 254}. As opposed to a GLD model used in Ratnasingam and Ning
(2020), we identify one additional change point at 253. When compared with Ngunkeng and Ning
(2014), we locate an additional change at 58th data point. Figures 2 and 3 show the confidence curves
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Figure 3: (e): Confidence curve for the data 88 ≤ i ≤ 153 the change point at k̂ = 55.

Figure 4: The weekly stock return data for Brazil with change point estimates.

for all change-point estimates and the 95% confidence sets are marked red dashed lines. All change
points are graphed in Figure 4.

5.2. Chilean market return ratio data

First, we compute MIC(n) = −1032.118 and min1≤k<262 MIC(k) = MIC(111) = −1047.216. Thus
the change point estimate k̂ is 111. The corresponding change point in the data is 112. Then
the MLEs of the pre-change and post-change parameters are (−0.0042, 58.20230.3994, 0.1338) and
(0.0012, 48.6707,−0.0726,−0.0061) respectively. Further, the 95% confidence set for the change
point is {110, 111, 112, 113, 114}. Next we apply the binary segmentation procedure to detect all the



MIC for change detection in GLD 315

Figure 5: (a): Confidence curve for the data 1 ≤ i ≤ 261 the change point at k̂ = 111, (b): Confidence curve for
the data 1 ≤ i ≤ 111 the change point at k̂ = 97, (c): Confidence curve for the data 112 ≤ i ≤ 261 the change

point at k̂ = 57, and (d): Confidence curve for the data 170 ≤ i ≤ 261 the change point at k̂ = 10.

Figure 6: The weekly stock return data for Chile with change point estimates.

changes in the data set. They are {98, 112, 170, 181}. When compared with Ratnasingam and Ning
(2020), we found an additional change point in the Chilean market data and only one change point.
Further, we found an additional change point 98 when compared to Ngunkeng and Ning (2014). The
confidence curves for all change point estimates and the 95% confidence sets are marked red dashed
lines in Figure 6.
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6. Discussion

In this paper, we propose a change point detection procedure for a GLD model based on the modified
information criterion. In order to use as much information about the change point location, the pro-
posed procedure takes into account the effect in terms of model complexity in regards to the location
of the change point. We provide confidence sets for the change point location for a specified level α.
We also obtain empirical critical values of the test statistics have been found. Simulations conducted
with different sample sizes and various change point locations show that our method performs well
in terms of a larger power, smaller confidence set, and smaller MSE when compared to other meth-
ods. Furthermore, we introduce a new goodness-of-fit test based on energy distance to determine the
asymptotic null distribution of S n. The use and the advantage of the proposed method are illustrated
via two stock market data sets.
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