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Abstract
In this paper, we develop a new statistical model to forecast the PM2.5 level in Seoul, South Korea. The

proposed model is based on the extreme quantile regression model with lasso penalty. Various meteorological
variables and air pollution variables are considered as predictors in the regression model, and the lasso quantile
regression performs variable selection and solves the multicollinearity problem. The final prediction model is
obtained by combining various extreme lasso quantile regression estimators and we construct a binary classifier
based on the model. Prediction performance is evaluated through the statistical measures of the performance of a
binary classification test. We observe that the proposed method works better compared to the other classification
methods, and predicts ‘very bad’ cases of the PM2.5 level well.
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1. Introduction

Particulate matter of less than 2.5 µm(PM2.5) is a critical issues in modern society, and the World
Health Organization WHO (2018) has estimated that around 7 million people die every year from
exposure to fine particles in polluted air. Numerous studies have been conducted to show the asso-
ciations between exposure to ambient PM2.5 and adverse health effects. Pui et al. (2014) reviewed
various aspects of PM2.5, including its measurement, source apportionment, visibility, and health ef-
fects, and mitigation, and Burnett et al. (2014) developed a fine particulate mass-based relative risk
function. In addition, Song et al. (2017) estimated the health burden attributable to PM2.5 based on
three years of observed data.

South Korea is one of the worst countries in terms of severe air pollution, and many studies have
focused on the PM2.5 in South Korea. Choi et al. (2012) examined the characteristics, sources, and
distributions of PM2.5 and carbonaceous species in Incheon, South Korea, and Ryou et al. (2018)
summarized the findings of PM source apportionment studies on South Korea. More recently, Bae et
al. (2020) estimated long-term foreign contributions to the PM2.5 concentrations in South Korea with
a set of air quality simulations.

Various statistical models have been applied to the data to predict PM2.5 level. Ordieres et al.
(2005) compared three different topologies of neural networks for predicting average PM2.5 concentra-
tions: multilayer perceptron (MLP), radial basis function (RBF) and square MLP. Dong et al. (2009)
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proposed a model based on hidden semi-Markov models for high PM2.5 concentration value predic-
tion, and Qiao et al. (2019) developed a model based on wavelet transform–stacked autoencoder–long
short term memory (LSTM).

These models perform well in the relatively usual event, but they work poorly to predict extremely
high levels of PM2.5. Since extreme events are rarely occurred, few data are used to learn the extreme
patterns of the PM2.5 level. Therefore, conventional statistical models does not perform well in pre-
dicting extreme events, if there is no assumption for such events in the models.

Various models have been developed to predict extreme values to overcome this issue. D’Amico et
al. (2015) advanced the generalized Pareto distribution to model the probability distribution function’s
tail to predict wind speed in Alaska. Quintela-del-Rı and Francisco-Fernández (2011) proposed a
nonparametric functional data analysis to estimate ozone data in the UK, and Schaumburg (2012)
combined nonparametric quantile regression with extreme value theory. However, few studies have
been conducted to predict extreme PM2.5 levels (Qin et al., 2015).

In this paper, we adapt the three-stage model proposed by Wang and Li (2013) to predict extreme
concentrations of PM2.5 in Seoul, South Korea. The three-stage model extends the model by Wang
et al. (2012a) that relaxed the assumptions of linear quantile functions of Y and tail equivalency
across covariates, x. Wang and Li (2013) integrated quantile regression and extreme value theory
by estimating intermediate conditional quantiles using quantile regression and extrapolating these
estimates to tails based on the extreme value theory.

In this paper, we modify the three-stage model with lasso regression (Tibshirani, 1996) to improve
the prediction performance of the extreme concentration of PM2.5. Lasso regression performs variable
selection, and provides a sparse solution. Therefore, even when numerous predictors are included in
the initial model stage, penalized regression methods, such as lasso, provide a parsimonious linear
model. There are various penalized quantile regression models (Wu and Liu, 2009; Alhamzawi et al.,
2012; Wang et al., 2012b), and we consider the lasso quantile regression in this study. We further
combine the three-stage models with the lasso penalty obtained from the various extreme quantile
values, and generate a single prediction value. Finally, a binary classifier based on the proposed
model is constructed.

The rest of the paper is organized as follows. The data description and exploratory data analysis
are provided in Section 2. In Section 3, we propose a binary classifier based on a three-stage model
with lasso regression, and an algorithm for implementation is presented in Section 4. In Section 5, we
apply the proposed method to the PM2.5 in Seoul, South Korea, and validate the results. Finally, the
concluding remarks are presented in Section 6.

2. Data

Table 1 lists the variables used in this study. The meteorological variables, hourly precipitation, tem-
perature, wind speed, and humidity, were collected from the South Korea Meteorological Adminis-
tration. Several studies indicate that the concentration level of PM2.5 is affected by the meteorological
factors. For example, Zhang et al. (2015) confirmed the critical role of meteorological parameters
in air pollution formation, and Zhang et al. (2018) studied the influences of critical meteorological
parameters, such as wind and precipitation, on PM concentrations. Therefore, we also included these
variables in this study.

Air pollutant data were obtained from AIR KOREA, affiliated with the Korea Environment Cor-
poration. The measurements include the hourly PM2.5, PM10, SO2, NO2, CO, and O3 content. Strac-
quadanio et al. (2007) studied the correlations between PM2.5 and gases (benzene, O3, SO2, NO2, and
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Table 1: Variables

Data Variable Interval Source

Meteorological data

Precipitation

Hourly
South Korea Meteorological AdministrationTemperature

Wind Speed https://www.kma.go.kr/Humidity

Air pollution data

PM2.5

Hourly

AIR KOREAPM10
SO2
NO2 https://www.airkorea.or.kr/CO
O3

Figure 1: Variables in 25 districts in Seoul, South Korea, measured at the marked stations.

Figure 2: Four-hour average values of PM2.5 from spring 2015 to spring 2020 in the Gangnam district. Dashed
horizontal lines indicate 76 µg/m3, which is a threshold value rated as ‘very bad’.

CO). Song et al. (2015) used the generalized additive model to determine the statistical relationships
between PM2.5 concentrations and other pollutants, including SO2, NO2, CO, and O3. Based on these
studies, we also consider these pollutant variables to be covariates.

The variables in Table 1 are measured in 25 districts in Seoul, South Korea (Figure 1). Differences
existed in places where the meteorological variables and air pollutant variables were measured, but
the distance between the stations is relatively short.
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Figure 3: Correlation matrix between the variables in the Gangnam district.

Table 2: Category table for PM2.5 levels in South Korea

Daily PM2.5 level Category
Good Normal Bad Very bad

(µg/m3) 0 ∼ 15 16 ∼ 35 36 ∼ 75 76 ∼

All variables were obtained from January 1, 2015, to May 29, 2020, but in this study, we consider
only the spring season (March, April, and May) every year, when the extremely high levels of PM2.5
are observed. In addition, for the fast computation, we used four-hour average values for all variables.
Therefore, the number of time points is 3298 for each district. For example, the four hour average
values of PM2.5 in the Gangnam district are presented in Figure 2.

Missing values occur in each measurements, thus, we imputed the missing points as follows. First,
linear imputation was applied if length of sequential missing points was less or equal to four. Second,
if the length of sequential missing points was greater than four and less than or equal to six, the
sequence was imputed by the value of the nearest region within 5 km. Finally, the rows were omitted
from the data if the previous steps did not impute the points.

To observe the variable correlations, we computed the correlation coefficients. Figure 3 displays
the correlation in the Gangnam district, where PM10, SO2, and CO have a positive association of
more than 0.5 with PM2.5, a relatively strong association. However, others have weak relationships
with less than 0.5. We also observed relatively strong associations between O3, NO2, CO, and wind
speed, implying multicollinearity between variables. For the other districts, we observed a similar
variable correlation.

The Ministry of Environment in South Korea categorizes the concentrations of PM2.5 levels be-
tween 0 and 15 µg/m3 as ‘good’, between 16 and 35 as ‘normal’, between 36 and 75 as ‘bad’, and
more than 76 as ‘very bad’ (Table 2). In this study, we focus on the forecasting ‘very bad’ cases in
Seoul that causes severe health effects. The number of time points that categorized based on the PM2.5
levels are presented in Table 3 for 25 districts. ‘Very bad’ cases are rarely observed for all districts,
implying that conventional mean based statistical models may not work well in predicting extremely
high PM2.5 levels.
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Table 3: Number of time points (%) in each categorized PM2.5 level in 25 districts in Seoul

District PM2.5 level District PM2.5 level
PM2.5 < 76 76 ≤ PM2.5 PM2.5 < 76 76 ≤ PM2.5

Gangnam 3200 (97%) 98 (3%) Seodaemun 3210(97%) 88(3%)
Gangdong 3229 (98%) 69 (2%) Seocho 3208(97%) 90(3%)
Gangbuk 3236 (98%) 62 (2%) Seongdong 3191(97%) 107(3%)
Gangseo 3229 (98%) 69 (2%) Seongbuk 3251(99%) 47(1%)
Gwanak 3194 (97%) 104 (3%) Songpa 3239(98%) 59(2%)

Gwangjin 3203 (97%) 95 (3%) Yangcheon 3217(98%) 81(2%)
Guro 3207 (97%) 91 (3%) Yeongdeungpo 3183(97%) 115(3%)

Geumcheon 3225 (98%) 73 (2%) Yongsan 3213(97%) 85(3%)
Nowon 3224 (98%) 74 (2%) Eunpyeong 3232(98%) 66(2%)
Dobong 3244 (98%) 54 (2%) Jongno 3215(97%) 83(3%)

Dongdaemun 3221 (98%) 77 (2%) Jung 3243(98%) 55(2%)
Dongjak 3211 (97%) 87 (3%) Jungnang 3211(97%) 87(3%)

Mapo 3185 (97%) 113 (3%)

3. Methodology

The proposed method is based on the three-stage model by Wang and Li (2013) with some modifica-
tions. We consider the response variable Y and covariate vector X = (X1, . . . , Xp)T with the X1 = 1,
and assume that we observe a random sample {(yi, xi), i = 1, . . . , n} of the random vector (Y, X).
The goal is to estimate the extremely high conditional quantiles for τn → 1 as n→ ∞,

QY (τn|x) := inf{y : FY (y|x) ≥ τn}, (3.1)

where FY (·|x) is the conditional cumulative distribution function of Y .
Similar to Wang and Li (2013), we assume that FY (·|x) is in the maximum domain of attraction

of an extreme value distribution Gγ(x), where γ(x) > 0 is the extreme value index. For the random
sample Z1, . . . ,Zn from FY (·|x), constants an(x) > 0 and bn(x) ∈ R exist such that,

P
(

Z(n) − bn(x)
an(x)

≤ y
)
→ Gγ(x)(y) = exp

{
− (1 + γ(x)y)−

1
γ(x)

}
, as n→ ∞, (3.2)

where Z(n) is the largest order statistic of the samples.
Although the three-stage model uses conventional quantile regression as a base model, we propose

regularized quantile regression using the lasso penalty to overcome the multicollinearity problem and
improve the prediction performance.

The entire procedure consists of four steps. First, the power transformation parameter λ of re-
sponse variable Y is estimated. Secondly, the conditional intermediate quantiles are fitted to the trans-
formed response variable. Then, the extreme quantile is estimated by extrapolating the intermediate
quantile estimates and we ensemble the estimates using a simple average. Finally, the result is divided
according to the threshold into two groups: ‘not very bad’ and ‘very bad’. The following section
details the description of the procedure.

3.1. Power transformation

In quantile regression, conditional quantiles of Y are assumed to be linear in x at the tails. To relax
this linearity assumption, Wang and Li (2013) considered the power transformation of Y . The power-
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transformed quantile regression model is defined as follows,

QΛλ(Y)(τ|xi) = xT
i θ(τ), for i = 1, . . . , n, (3.3)

where τ ∈ [1 − ε, 1], where ε is a small positive constant, and θ(τ) is the τ-th quantile regression
coefficient.

Λλ(y) =


yλ − 1
λ

, if λ , 0,

log(y), if λ = 0.
(3.4)

The power transformation parameter λ in (3.4) is estimated as follows,

λ̂ = arg min
λ

n∑
i=1

{
Rn (xi, λ; τ)2

}
, (3.5)

where Rn(t, λ; τ) = 1/n
∑n

i=1 I(xi ≤ t)[τ − I{Λλ(yi) − xT
i θ̂

LASSO(τ; λ) ≤ 0}], and I is the indicator
function. The estimated lasso coefficient, θ̂LASSO(τ; λ), is computed as follows,

θ̂LASSO(τ; λ) = arg min
f =(b1,...,bp)T

n∑
i=1

ρτ
(
Λλ(y j) − xT

i f
)

+ ν

p∑
l=1

∣∣∣b j

∣∣∣ , (3.6)

where ρτ(x) = x{τ − I(x < 0)} is the τth quantile loss function, and ν is a penalty parameter in lasso
regression estimated at each λ through using the cross-validation method (Tibshirani, 1996; Wu and
Liu, 2009). Wang and Li (2013) suggested using the upper quantile level τ = 1− ε with small positive
constant ε, and we set τ = 0.95.

3.2. Estimating intermediate quantiles

In this step, we estimate the intermediate quantiles QY (τ j|x) for τ j = j/(n + 1), j = 1, . . . ,m, with
m = n − [nη]. Parameter η is set as 0.1, as suggested by Wang and Li (2013), and [x] denotes the
integer part of x.
The estimate of the intermediate quantile is

Q̂Y (τ j|x) = Λ−1
λ̂

{
xT θ̂LASSO

(
τ j; λ̂

)}
, (3.7)

where λ̂ is a power transformation parameter estimated from (3.5), and

θ̂LASSO
(
τ j; λ̂

)
= arg min

f =(b1,...,bp)T

n∑
i=1

ρτ j

(
Λλ̂(yi) − xT

i f
)

+ ν

p∑
l=1

|bl| . (3.8)

3.3. Extrapolating intermediate quantiles to tails

Next, we extrapolated the intermediate quantile estimates to the extreme tails. For τn → 1, we
estimated QY (τn|x) as follows,

Q̂Y (τn|x) =

(
1 − τn−k

1 − τn

)γ̂k(x)

Q̂Y (τn−k |x), (3.9)
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where k = kn → ∞ and k/n→ 0.
The extreme value index γ̂k(x) is estimated using the followings,

γ̂k(x) =
1

k − [nη] + 1

k∑
j=[nη]

log
Q̂Y (τn− j|x)

Q̂Y (τn−k |x)
. (3.10)

The selection of k is a crucial part of the three-stage model, and we applied a selection procedure, a
modified version of Section 3.3 of Wang and Li (2013), by adding a lasso penalty term.
Then, we ensemble the extreme quantile results, Q̂Y (τn|x), for τn ∈ E, using a simple average,

Q̂ensemble :=
1
|E|

∑
τn∈E

Q̂Y (τn|x), (3.11)

where E contains extreme quantile levels, and we set E = {0.950, 0.955, . . . , 0.990, 0.995, 0.999}. |E|
denotes the number of elements in the set, which is equal to 11.

3.4. Binary classification procedure

In the last step, the estimated extreme quantile, Q̂ensemble is classified into two classes based on the
threshold value. This study focuses on the prediction of ‘very bad’ cases of PM2.5; thus, we set the
threshold as 76µg/m3, which is defined in Table 2.

Ŷ =

{
1, if Q̂ensemble ≥ 76,
0, if Q̂ensemble < 76.

(3.12)

4. Algorithm

We observed that {(yi, xi), i = 1, . . . , n}, where yi is PM2.5, and xi = (x1,i, . . . , x9,i)T is a covariate
vector on the ith time. We used nine variables as covariates: PM10, SO2, NO2, CO, O3, precipitation,
temperature, wind speed, and humidity.
Note that, we have used predicted explanatory variables. Therefore, proposed model can be written
as,

Yi+1 = f (x̂i+1|i), where x̂i+1|i = g(x1, . . . , xi),

where f (·) is proposed three-stage model and g(·) is the forecast model based on the exponential
smoothing (ETS) algorithm (Hyndman et al., 2008) computed as follows,

x̂i+1|i = αxi + (1 − α)x̂i|i−1,

where α is the smoothing parameter estimated by maximizing the likelihood.
The number of time points in the data set is 3, 298. We have few ‘very bad’ cases in the overall

data; thus, a small test set contains few ‘very bad’ cases. Therefore, to validate the performance in
predicting extreme cases, we have considered splitting the data into training and test sets at a ratio of
1:2. In this study, n1 = 1,099 observations from March 1, 2015, to March 31, 2017, were used for the
training data, and the test data are n2 = 2,199 observations obtained from April 1, 2017, to May 29,
2020.

We constructed the proposed model using training data, and validated the model using test data.
The training data are denoted as {(ytr

i , x
tr
i ), i = 1, . . . , n1}, and the test data are {(yte

i , x
te
i ), i = 1, . . . , n2}.

For each district in Seoul, we ran the following algorithm.
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Algorithm 1: Three-stage model with Lasso ensemble
for District in {Gangnam,. . . ,Jungnang} do

for τe in E={0.950, 0.955, . . . , 0.990, 0.995, 0.999} do
[S tep 1]
Find the optimal power transformation parameter λ̂ from Λ ∈ {−1.5,−1.4, . . . , 1.4, 1.5} using the training

data. In this step, a penalty parameter ν in the lasso regression at each λ is estimated using the 10-fold
cross-validation technique.

[S tep 2]
Find the optimal k̂ is computed from the equally spaced K = [10, 20, . . . , 110] as follow,

k̂ = arg min
k∈K

n1∑
i=1

{γ̂k(xtr
i ) − γ̂∗k(xtr

i )}2,

where γ̂∗k(x) = M(1)
k + 1 − 1/2(1 − (M(1)

k )2/M(2)
k )−1 with

M(l)
k =

1
k − [n1η] + 1

k−[n1
η]+1∑

j=1

log
xT θ̂LASSO(τ j; λ̂)

xT θ̂LASSO(τ1; λ)


l

, for l = 1, 2.

Here, η = 0.1.
[S tep 3]
Let u := k̂ − [n1

η] + 1. Then, consider u quantile values, τ1 < · · · < τu, equally spaced between
[1 − k̂/(n1 + 1), (n1 − [nη1])/n1 + 1]. Compute

θ̂LASSO(τ; λ̂) = arg min
f

n1∑
i=1

ρτ(Λλ̂(ytr
i ) − xtr

i
T f ) + ν

p∑
l=1

|bl | ,

where the optimal penalty parameter ν is computed using cross-validation.
[S tep 4]
For j = 1, . . . , u, estimate intermediate quantiles as

Q̂Y te (τ j |x̂te) = Λ−1
λ̂
{x̂teT

θ̂LASSO(τ j; λ̂)},

where x̂te is predicted by ETS algorithm, x̂te = g(xtr).
[S tep 5]
Extrapolate the intermediate quantiles to the extreme tail,

Q̂Y te (τn |x̂te) =

(
1 − τ1

1 − τn

)γ̂k̂(x̂te)

Q̂Y te (τ1 |x̂te),

where

γ̂k̂(x̂te) =
1
u

u∑
j=1

log
Q̂Y te (τ j |x̂te)

Q̂Y te (τ1 |x̂te)
.

end
Ensemble the extreme quantile results of the test sample,

Q̂ensemble :=
1
|E|

∑
τn∈E

Q̂Y (τn |x̂te).

The final binary prediction value for the test data is following,

Ŷ te =

1, if Q̂ensemble ≥ 76,
0, if Q̂ensemble < 76.

end

5. Application

5.1. Evaluation metrics

The results were summarized using the sensitivity, specificity, positive predictive value, negative pre-
dictive value, and the F-score, which are statistical performance measures for a binary classification
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Table 4: Confusion matrix

Prediction
Positive (‘Very bad’ ) Negative (‘Not very bad’ )

Actual Positive (‘Very bad’ ) True positive (TP) False negative (FN)
Negative (‘Not very bad’ ) False positive (FP) True negative (TN)

test. Based on the confusion matrix in Table 4, the following measures are defined,

• Sensitivity measures the proportion of correctly identified positives (the proportion of ‘very bad’
time points that are correctly identified as ‘very bad’),

Sensitivity =
TP

TP + FN
.

• Specificity measures the proportion of correctly identified negatives (the proportion of ‘not very
bad’ time points that are correctly identified as ‘not very bad’),

Specificity =
TN

TN + FP
.

• The positive predictive value (PPV) is calculated as follows,

PPV =
TP

TP + FP
.

• The negative predictive value (NPV) is calculated as follows,

NPV =
TN

TN + FN
.

• The F-score measures overall accuracy is calculated as follows,

F-score =

(
1 + β2

)
TP(

1 + β2) TP + β2FN + FP
=

(
1 + β2

)
× PPV × Sensitivity(

β2 × PPV
)

+ Sensitivity
.

The F-score is distributed from 0 to 1 and controlled by β, and it is chosen such that sensitivity
is considered β times as important as the PPV. Considering our purpose is to accurately predict a
‘very bad’ event and the rareness of the event, we set β = 2 (Sasaki, 2007).

5.2. Comparison methods

Three conventional classification models are applied to evaluate the relative performance of the pro-
posed model. As a representative non-parametric ensemble algorithm, the random forest (RF) is
known to be robust to outliers and performs well in many classification problems. The MLP and
LSTM models are artificial neural networks which are widely used in various applications. Signifi-
cantly, variants of the LSTM have been used in predicting of PM2.5 because it is appropriate for time
series data.

The details of each model are summurized in Table 5. The hyperparameters are selected by trial
and error. For example, we considered 400, 600, and 800 number of trees, and choose the 800 as the
optimal value.

The commonly used threshold value which is used to classify the observation as positive is 0.5.
However, the value may be inappropriate, considering the extremeness of the ‘very bad’ events in the
data (Zou et al., 2016). Therefore, we considered threshold values from 0.01 to 1 in the test data and
choose the result that provides the best F-score (Lakshmi and Prasad, 2014).
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Table 5: Hyper parameters and architectures of comparison methods

Hyper parameter Value
n estimators 800RF
max features 3

MLP

Hyper parameter Value
Optimizer Adam
Batch size 16

Loss function binary cross entropy
Learning rate 0.001
Layer type Input Output Activation
Dense layer 9 64 ReLU

Dropout layer 64 64 ·

Dense layer 64 1 Sigmoid

LSTM

Hyper parameter Value
Optimizer Adam
Batch size 16

Loss function binary cross entropy
Learning rate 0.001
Input window 6
Layer type Input Output Activation
LSTM layer (6,9) 64 tanh
Dense layer 64 1 Sigmoid

Table 6: Performance table for Guro, Yangcheon, and Yeongdeungpo (Bold indicates best performance)

District Method F-score PPV NPV Sensitivity Specificity
TSLE 0.768 0.463 0.997 0.920 0.962

RF 0.545 0.241 0.992 0.797 0.912
MLP 0.284 0.098 0.981 0.541 0.826Guro

LSTM 0.331 0.137 0.981 0.514 0.887
TSLE 0.584 0.692 0.984 0.562 0.991

RF 0.341 0.532 0.974 0.312 0.990
MLP 0.122 0.028 0.869 0.712 0.072Yangcheon

LSTM 0.279 0.110 0.976 0.450 0.863
TSLE 0.727 0.568 0.990 0.781 0.973

RF 0.561 0.356 0.984 0.656 0.946
MLP 0.464 0.161 0.993 0.875 0.791Yeongdeungpo

LSTM 0.498 0.253 0.983 0.656 0.911

5.3. Results

The results from three districts, Guro, Yangcheon, and Yeongdeungpo, are presented in Table 6. The
proposed three-stage model with lasso ensemble (TSLE) method provides the highest PPVs and com-
parable sensitivity values, and works best according to the F-score. Although the sensitivity values for
the MLP are higher than those for the other models on for Yangcheon and Yeongdeungpo, the MLP
has the lowest PPVs, which indicates that a false alarm frequently occurs. This outcome implies that
the proposed method has relatively balanced performance for predicting ‘very bad’ events. However,
all models perform well in terms of the NPV and specificity, because of the extremely imbalanced
data.

In Figure 4, we plot the F-scores from the three-stage model with lasso regression (TSL) before
ensemble. The specific quantile result may provide the best result but there is inconsistent. For
example, TSL prediction when τn = 0.990 has the highest F-score in Guro, whereas the highest
value occurs when τn = 0.999 in Yangcheon. Therefore, the ensemble technique solves this selection
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Figure 4: F-score values for three districts.

Figure 5: Average measures for 25 districts.

Table 7: Proportion of selection for each variable in the three-stage lasso models

Variable Proportion of selection
Precipitation 0.664
Temperature 0.976

Humidity 0.980
Wind Speed 0.672

CO 0.343
NO2 0.014
O3 0.031

PM10 1
SO2 0

problem, and offers superior performance overall.
We obtained similar results for all 25 districts (not shown), and we plotted the average measures

of all districts in Figure 5. Overall, the proposed TSLE method works best for all five measures.
As the lasso regression performs the variable selection, some variables are not selected in the

regression model. Therefore, we present the proportion of the selection for each variable in Table 7.
Temperature, humidity, and PM10 were selected in most models, and NO2, O3 and SO2 were rarely
selected.

6. Conclusion

In this paper, we consider the prediction of extreme values of PM2.5 in Seoul, South Korea. Compared
to the conventional mean-based models, the proposed method is based on the quantile regression with
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the extreme value theory. Therefore, the proposed model predicts the extremely high values of PM2.5
especially well. Moreover, we added the lasso penalty term to the quantile model, so it performs
variable selections. Based on the statistical measures of the performance of a binary classification
test, such as the sensitivity, PPV, and F-score, the proposed method works well for 25 districts in
Seoul, South Korea.

We expected that the proposed model performance would improve by adding meteorological vari-
ables in China, which significantly affect the atmospheric conditions in South Korea. In addition, the
data file and R code for implementation are provided at https://github.com/SaeSimcheon/ Extreme-
PM2.5-prediction.
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