과제정보
This work was supported by the National Research Foundation of Korea (NRF-2019R1F1A1061691) and research Grants of Korea Forest Service project (No.2019149A00-2123-0301)
참고문헌
- Buscot MJ, Wotherspoon SS, Magnussen CG, et al. (2017). Bayesian hierarchical piecewise regression models: A tool to detect trajectory divergence between groups in long-term observational studies, BMC Medical Research Methodology, 17, 1-15. https://doi.org/10.1186/s12874-016-0277-1
- Dahl DB (2006). Model-based clustering for expression data via a Dirichlet process mixture model, Bayesian Inference for Gene Expression and Proteomics, 4, 201-218. https://doi.org/10.1017/CBO9780511584589.011
- Da Silva ARF (2007). A Dirichlet process mixture model for brain MRI tissue classification, Medical Image Analysis, 11, 169-182. https://doi.org/10.1016/j.media.2006.12.002
- Dimatteo L, Genovese CR, and Kass RE (2001). Bayesian curve-fitting with free-knot splines, Biometrika, 88, 1055-1071. https://doi.org/10.1093/biomet/88.4.1055
- Dung VT and Tjahjowidodo T (2017). A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting, PLOS one, 12.
- Escobar MD and West M (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
- Furukawa K, Misumi M, Cologne JB, and Cullings HM (2016). A Bayesian semiparametric model for radiation dose-response estimation, Risk Analysis, 36, 1211-1223. https://doi.org/10.1111/risa.12513
- Gorur D and Rasmussen CE (2010). Dirichlet process gaussian mixture models: Choice of the base distribution, Journal of Computer Science and Technology, 25, 653-664. https://doi.org/10.1007/s11390-010-1050-1
- Grant EJ, Brenner A, Sugiyama H, et al. (2017). Solid cancer incidence among the life span study of atomic bomb survivors, Radiation Research, 187, 513-537. https://doi.org/10.1667/RR14492.1
- Holmes CC and Mallick BK (2001). Bayesian regression with multivariate linear splines, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 3-17. https://doi.org/10.1111/1467-9868.00272
- Ishwaran H and James LF (2001). Gibbs sampling methods for stick-breaking priors, Journal of the American Statistical Association, 96, 161-173. https://doi.org/10.1198/016214501750332758
- Ishwaran H and James LF (2002). Approximate Dirichlet process computing in finite normal mixtures: smoothing and prior information, Journal of Computational and Graphical Statistics, 11, 508-532. https://doi.org/10.1198/106186002411
- Kauermann G and Opsomer JD (2011). Data-driven selection of the spline dimension in penalized spline regression, Biometrika, 98, 225-230. https://doi.org/10.1093/biomet/asq081
- Kern I, John C, and Cohen SM (2005). Menopausal symptom relief with acupuncture: Bayesian analysis using piecewise regression, Communications in Statistics-Simulation and Computation, 34, 783-798. https://doi.org/10.1081/SAC-200068508
- MacEachern SN and Muller P (1998). Estimating mixture of Dirichlet process models, Journal of Computational and Graphical Statistics, 7, 223-238. https://doi.org/10.2307/1390815
- McAuliffe JD, Blei DM, and Jordan MI (2006). Nonparametric empirical Bayes for the Dirichlet process mixture model, Statistics and Computing, 16, 5-14. https://doi.org/10.1007/s11222-006-5196-2
- Muller P, Erkanli A, and West M (1996). Bayesian curve fitting using multivariate normal mixtures, Biometrika, 83, 67-79. https://doi.org/10.1093/biomet/83.1.67
- Ngan HY, Yung NH, and Yeh AG (2015). Outlier detection in traffic data based on the Dirichlet process mixture model, IET Intelligent Transport Systems, 9, 773-781. https://doi.org/10.1049/iet-its.2014.0063
- NRC (2006). Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2 (National Research Council and others), National Academies Press, 7.
- Orbanz P and Teh YW (2010). Bayesian nonparametric models, Encyclopedia of Machine Learning, 1.
- Park Y and Kim Y (2020). Estimation of the excess relative risk using the piecewise linear model with Gaussian process, Journal of the Korean Data and Information Science Society, 31, 1145-1153. https://doi.org/10.7465/jkdi.2020.31.6.1145
- Rasmussen CE (1999). The infinite Gaussian mixture model. In Proceedings of the 12th International Conference on Neural Information Processing Systems, 12, 554-560.
- Reich BJ and Bondell HD (2011). A spatial Dirichlet process mixture model for clustering population genetics data, Biometrics, 67, 381-390. https://doi.org/10.1111/j.1541-0420.2010.01484.x
- Straub J, Chang J, Freifeld O, Fisher I, and John W (2015). A Dirichlet process mixture model for spherical data, Artificial Intelligence and Statistics, 930-938.
- Teh YW, Jordan MI, Beal MJ, and Blei DM (2006). Hierarchical Dirichlet processes, Journal of the American Statistical Association, 101, 1566-1581. https://doi.org/10.1198/016214506000000302
- Teh YW (2011). Dirichlet process, In Encyclopedia of Marchine Learning(pp280-897), New York, Springer.
- Yu G, Huang R, and Wang Z (2010). Document clustering via Dirichlet process mixture model with feature selection. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 763-772.