DOI QR코드

DOI QR Code

Optimal indirect model predictive control for single-phase two-level shunt active power filters

  • Morales-Caporal, Roberto (Division de Estudios de Posgrado E Investigacion, Tecnologico Nacional de Mexico, Instituto Tecnologico de Apizaco)
  • Received : 2021.07.15
  • Accepted : 2021.11.10
  • Published : 2022.01.20

Abstract

In the conventional model predictive control (MPC) for single-phase two-level shunt active power filters (SP-2L-SAPFs), the voltage vector (VV) that is synthesized by the voltage source inverter (VSI) in the next control cycle is selected by the evaluation of a cost function. However, the application of a single VV, either an active VV (AVV) or a zero VV (ZVV), during the whole control cycle results in a grid current with a high ripple. To overcome this drawback, an optimized indirect MPC (IMPC) scheme that uses two VVs in each control cycle is proposed. The IMPC predicts the current slopes of all the VVs generated by the VSI. Then, it calculates the optimal on-time for each of the available AVVs. Two switching strategies are evaluated in this work to select the optimum ones for implementation. The fnal selection of a set of AVV and its on-time is carried out by evaluating the cost function as done in the MPC. To keep the voltage on the DC-link constant, a discrete-time fractional order PIλ controller is used. Simulation and experimental results obtained using a 10 kW SP-2L-SAPF prototype and a low-cost digital system verify the excellent performance of the proposed IMPC algorithm.

Keywords

References

  1. Sanjan, P.S., et al.: Enhancement of power quality in domestic loads using harmonic filters. IEEE Access 8, 197730-197744 (2020) https://doi.org/10.1109/access.2020.3034734
  2. Liu, Y., Zhang, W., Sun, Y., Su, M., Xu, G., Dan, H.: Review and comparison of control strategies in active power decoupling. IEEE Trans. Power Electron. 36(12), 4436-14455 (2021)
  3. Yu, W., Yun-Xiang, X.: Adaptive dc-link voltage control for shunt active power filter. J. Power Electron. 14(4), 764-777 (2014) https://doi.org/10.6113/JPE.2014.14.4.764
  4. Merai, M., Naouar, M.W., Slama-Belkhodja, I., Monmasson, E.: An adaptive pi controller design for dc-link voltage control of single-phase grid-connected converters. IEEE Trans. Ind. Electron. 66(8), 6241-6249 (2019) https://doi.org/10.1109/tie.2018.2871796
  5. Hou, S., Fei, J., Chu, Y., Chen, A.C.: Experimental investigation of adaptive fuzzy global sliding mode control of single-phase shunt active power filters. IEEE Access 7, 64442-64449 (2019) https://doi.org/10.1109/access.2019.2917020
  6. Zhuo, J., An, C., Fei, J.: Fuzzy multiple hidden layer neural sliding mode control of active power filter with multiple feedback loop. IEEE Access 9, 114294-114307 (2021) https://doi.org/10.1109/ACCESS.2021.3104030
  7. Jung, J.H., Hwang, S.I., Kim, J.M.: A common-mode voltage reduction method using an active power filter for a three-phase three-level npc pwm converter. IEEE Trans. Ind. Appl. 57(4), 3787-3800 (2021) https://doi.org/10.1109/TIA.2021.3053216
  8. Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L.G., Norambuena, M.: Model predictive control for power converters and drives: advances and trends. IEEE Trans. Ind. Electron. 64(2), 935-947 (2017) https://doi.org/10.1109/TIE.2016.2625238
  9. Liao, Z., Pilawa-Podgurski, R.C.N.: A high power density multilevel bipolar active single-phase buffer with full capacitor energy utilization and controlled power harmonics. IEEE Trans. Power Electron. 36(11), 13067-13079 (2021) https://doi.org/10.1109/TPEL.2021.3075738
  10. Karamanakos, P., Liegmann, E., Geyer, T., Kennel, R.: Model predictive control of power electronic systems: methods, results, and challenges. IEEE Open Journal of Ind. Appl. 1, 95-114 (2020) https://doi.org/10.1109/ojia.2020.3020184
  11. Sandre-Hernandez, O., Rangel-Magdaleno, J., Morales-Caporal, R.: A comparison on fnite-set model predictive torque control scheme for PMSMs. IEEE Trans. Power Electron. 33(10), 8838-8847 (2018) https://doi.org/10.1109/tpel.2017.2777973
  12. Zhang, Y., Zhu, J.: Model predictive torque control of induction motor drives with optimal duty cycle control. IEEE Trans. Power Electron. 26(12), 6593-6603 (2014) https://doi.org/10.1109/TPEL.2014.2302838
  13. Vazquez, S., Aguilera, R., Acuna, P., Pou, J., Leon, J., Franquelo, L., Agelidis, V.: Model predictive control for single-phase npc converters based on optimal switching sequences. IEEE Trans. Ind. Electron. 63(12), 7533-7541 (2016) https://doi.org/10.1109/TIE.2016.2594227
  14. Hoon, Y., Radzi, M.A.M., Zainuri, M.A.A.M., Zawawi, M.A.M.: Shunt active power filter: A review on phase synchronization control techniques. Electronics 8, 1-12 (2019) https://doi.org/10.3390/electronics8010001
  15. Parvez, M., et al.: Comparative study of discrete PI and PR Controls for single-phase UPS Inverter. IEEE Access 8, 45584-45595 (2020) https://doi.org/10.1109/access.2020.2964603
  16. Bolton, W.: Instrumentation and control systems. Chap. 10. Newnes-Elsevier (2015).
  17. Zhang, F., Yang, C., Zhou, X., Gui, W.: Optimal setting and control strategy for industrial process based on discrete-time fractional-order PIλDμ. IEEE Access 7, 47747-47761 (2019) https://doi.org/10.1109/access.2019.2909816
  18. Tejado, I., Vinagre, B.M., Traver, J.E., Prieto-Arranz, J., Nuevo-Gallardo, C.: Back to basics: meaning of the parameters of fractional order PID controllers. Mathematics. 7(6), 1-16 (2019)
  19. Hernandez-Castaneda. K.: Design and construction of a singlephase active power filter using the TMS320 F28335," M. Sc. thesis, Technological Institute of Apizaco, Mexico. 2018.
  20. Mitsubishi Electric. IGBT modules application note. The 5th Generation [CSTBTTM] IGBT chip use 12NF/24NF/24A series, 2007.
  21. Mora, A., Juliet, J., Santander, A., Lezana, P.: Dead-time and semiconductor voltage drop compensation for cascaded H-bridge converters. IEEE Trans. Ind. Electron. 63(12), 7833-7842 (2016) https://doi.org/10.1109/TIE.2016.2563378
  22. IEEE Power and Energy Society. Recommended practice and requirements for harmonic control in Electric power systems, in IEEE Std 519-2014, Piscataway, NJ, USA, 1-29, (2014)