DOI QR코드

DOI QR Code

Auxiliary resonant commutated pole soft-switching inverter with simple topology

  • Chu, Enhui (College of Information Science and Engineering, Northeast University) ;
  • Zhang, Tianyu (College of Information Science and Engineering, Northeast University) ;
  • Wang, Zhiyong (College of Information Science and Engineering, Northeast University)
  • Received : 2021.07.19
  • Accepted : 2021.11.19
  • Published : 2022.02.20

Abstract

To address the complex topology of auxiliary resonant commutated pole inverters and the large current stress of auxiliary switches, this paper proposes an auxiliary resonant commutated pole soft-switching inverter with a simple topology. The proposed inverter not only reduces the current stress of the auxiliary switches and the loss caused by the reactive energy conversion in the circuit but also simplifies the topology of the auxiliary commutated circuit, reduces the cost of the inverter, and improves the reliability of the inverter. The inverter is suitable for small and medium power applications. Under the proposed modulation strategy, the operation principle of the inverter, the conditions of soft-switching realization, and the optimal parameter design method are analyzed in detail according to the equivalent circuit diagrams in different operating modes. Finally, a 10-kW, 16-kHz prototype is fabricated using insulated gate bipolar transistors (IGBT) as switches, and the effectiveness of this inverter is verified through experiments.

Keywords

Acknowledgement

National natural science foundation of China, 51977028, Enhui Chu.

References

  1. Huang, Z., Li, Q., Lee, F.C.: Ritical-conduction-mode-based soft-switching modulation for three-phase PV inverters with reactive power transfer capability. IEEE Trans. Power Electron. 35(6), 5702-5713 (2020) https://doi.org/10.1109/tpel.2019.2951130
  2. Wang, Y., Liu, W., Ma, H., Chen, L.: Resonance analysis and soft-switching design of isolated boost converter with coupled inductors for vehicle inverter application. IEEE Trans. Power Electron. 30(3), 1383-1392 (2015) https://doi.org/10.1109/TPEL.2014.2317838
  3. Samani, R., Beyragh, D.S., Pahlevani, M.: A new grid-connected DC/AC inverter with soft switching and low current ripple. IEEE Trans. Power Electron. 34(5), 4480-4496 (2019) https://doi.org/10.1109/tpel.2018.2863183
  4. Zhang, Y., Li, Q., Jiang, D.: A motor CM impedance based transformerless active EMI filter for DC-side common-mode EMI suppression in motor srive system. IEEE Trans. Power Electron. 35(10), 10238-10248 (2020) https://doi.org/10.1109/tpel.2020.2980881
  5. Divan, D.M.: The resonant DC link converter-a new concept in static power conversion. IEEE Trans. Ind Applications. 25(2), 317-325 (1989) https://doi.org/10.1109/28.25548
  6. Chu, E., Xie, H., Bao, J., Chen, Z., Kang, Y.: Resonant inductance design and loss analysis of a novel resonant DC link inverter. IEEE Trans. Power Electron. 35(12), 1392-1405 (2020) https://doi.org/10.1109/TPEL.2019.2924252
  7. McMurray, W.: Resonant snubbers with auxiliary switches. Conference Record of the IEEE Industry Applications Society Annual Meeting. 289-834 (1989).
  8. Doncker, R. W. De., Lyons, J. P.: The auxiliary resonant commutated pole converter. Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, 1228-1235 (1990).
  9. Yuan, X., Barbi, I.: Analysis, designing, and experimentation of a transformer-assisted PWM zero-voltage switching pole inverter. IEEE Trans. Power Electron. 15(1), 72-82 (2000) https://doi.org/10.1109/63.817365
  10. Yu, W., Lai, J., Park, S.: An improved zero-voltage switching inverter using two coupled magnetics in one resonant pole. IEEE Trans. Power Electron. 25(4), 952-961 (2010) https://doi.org/10.1109/TPEL.2009.2030197
  11. Xiao, H.F., Zhang, L., Li, Y.: A zero-voltage-transition HERIC-Type transformerless photovoltaic grid-connected inverter. IEEE Trans. Ind Electron. 64(2), 1222-1232 (2017) https://doi.org/10.1109/TIE.2016.2611574
  12. Wang, C., Su, C., Jiang, M., Lin, Y.: A ZVS-PWM single-phase inverter using a simple ZVS-PWM commutation cell. IEEE Trans. Ind Electron. 55(2), 758-766 (2008) https://doi.org/10.1109/TIE.2007.911925
  13. Tofoli, F.L., Gallo, C.A.: Analysis, design, and implementation of soft-switching cells applied to the single-phase full-bridge inverter. IET Power Electron. 9(6), 1249-1258 (2016) https://doi.org/10.1049/iet-pel.2015.0076
  14. Nakamura, M., Yamazaki, T., Fujii, Y., Ahmed, T., Nakaoka, M.: A novel prototype of auxiliary edge resonant bridge leg link snubber-assisted soft-switching sine-wave PWM inverter. Electr. Eng. Jpn. 155(4), 64-76 (2006)
  15. Chu, E., Wu, M., Huang, L., Hou, X., Zhang, H.: Research on a novel modulation strategy for auxiliary resonant commutated pole inverter with the smallest loss in auxiliary commutation circuits. IEEE Trans. Power Electron. 29(3), 1103-1117 (2014) https://doi.org/10.1109/TPEL.2013.2261092
  16. Chu, E., Zhang, X., Huang, L.: Research on a novel modulation strategy for double auxiliary resonant commutated pole soft-switching inverter with the shunt dead time. IEEE Trans. Power Electron. 31(10), 6855-6869 (2016) https://doi.org/10.1109/TPEL.2015.2508143
  17. Chu, E., Chen, Z., Xie, H., Zhang, H.: Modified double auxiliary resonant commutated pole inverter and its modulation strategy. IEEE J. Emerg. Sel. Topics Power Electron. 8(4), 4467-4481 (2020) https://doi.org/10.1109/jestpe.2019.2939168
  18. Chu, E., Huang, L., Fu, Z.: Research on an active double auxiliary resonant commutated pole soft-switching inverter. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE). 637-642 (2014).
  19. Wang, Q., Wang, Y.: Research on a novel high-efficiency three-phase resonant pole soft-switching inverter. IEEE Trans. Power Electron. 36(5), 5845-5857 (2021) https://doi.org/10.1109/TPEL.2020.3029186