DOI QR코드

DOI QR Code

Modulated model predictive current control of HERIC AFE converter equipped with LCL filter

  • Kang, Minju (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Kim, Jinwoo (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Han, Sanghun (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Cho, Younghoon (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Lee, Eunsoo (Korea Railroad Research Institute)
  • 투고 : 2021.09.23
  • 심사 : 2021.10.28
  • 발행 : 2022.01.20

초록

This paper proposes a modulated model predictive control (MMPC) of a highly efficient and reliable inverter concept (HERIC) active front end (AFE) converter equipped with an LCL filter. The proposed method is based on the model predictive control (MPC) concept and obtains the optimized duty cycle by using three-level switching states which can be implemented in the HERIC converter. By doing so, the AFE converter achieves fast and precise current control. In addition, the obtained duty cycle is not limited to the polarity of the grid voltage, so it is possible to track the current reference more accurately near the zero-crossing points. The first-order approximation model of the LCL filter is derived to simplify the controller design process with the proposed MMPC. After that, the MMPC algorithm is adopted based on this simplified model in the single-phase system. The switching pattern of the HERIC topology is also proposed considering the MMPC under changing polarity of the duty cycle. To verify the performance of the proposed scheme, a 3 kW HERIC AFE converter was built and tested. Both simulation and experimental results demonstrate that the proposed scheme not only improves total harmonic distortion, but also achieves a fast-tracking performance.

키워드

과제정보

This work was supported by a Grant (21RTRP-B146050-04) from the Railroad Technology Development Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korean Government. This work was supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20194030202370).

참고문헌

  1. Lai, J., Lai, W., Moon, S., Zhang, L., Maitra, A.: A 15-kV class intelligent universal transformer for utility applications. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). 1974-1981 (2016)
  2. Huber, J.E., Kolar, J.W.: Solid-state transformers: on the origins and evolution of key concepts. IEEE Trans. Ind. Electr. Mag. 10(3), 19-28 (2016) https://doi.org/10.1109/MIE.2016.2588878
  3. She, X., Huang, A.Q., Burgos, R.: Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(3), 186-198 (2013) https://doi.org/10.1109/JESTPE.2013.2277917
  4. Jung, J., Choi, H.: Practical design of dual active bridge converter as isolated bi-directional power interface for solid state transformer applications. J. Electr. Eng. Technol. 11(5), 1265-1273 (2016) https://doi.org/10.5370/JEET.2016.11.5.1265
  5. Quevedo, D.E., Aguilera, R.P., Perez, M.A., Cortes, P., Lizana, R.: Model predictive control of an AFE rectifier with dynamic references. IEEE Trans. Power Electron. 27(7), 3128-3136 (2012) https://doi.org/10.1109/TPEL.2011.2179672
  6. Cortes, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E., Rodriguez, J.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312-4324 (2008) https://doi.org/10.1109/TIE.2008.2007480
  7. Akter, M.P., Mekhilef, S., Tan, N.M.L., Akagi, H.: Stability and performance investigations of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems. J. Power Electron. 15(1), 202-215 (2015) https://doi.org/10.6113/JPE.2015.15.1.202
  8. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  9. Zanchetta, P., Gerry, D.B., Monopoli, V.G., Clare, J.C., Wheeler, P.W.: Predictive current control for multilevel active rectifiers with reduced switching frequency. IEEE Trans. Ind. Electron. 55(1), 163-172 (2008) https://doi.org/10.1109/TIE.2007.903939
  10. Lei, Y., Du, G., Zhang, Y., et al.: Fixed switching frequency strategy for finite-control-set model predictive control based on cost function reconstruction. J. Power Electron. 21, 853-864 (2021) https://doi.org/10.1007/s43236-021-00222-y
  11. Tarisciotti, L., Zanchetta, P., Watson, A., Clare, J.C., Degano, M., Bifaretti, S.: Modulated model predictive control for a three-phase active rectifier. IEEE Trans. Ind. Electron. 51(2), 1610-1620 (2015)
  12. Vazquez, S. et al.: Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors. In: 2009 IEEE International Conference on Industrial Technology, pp. 1-6 (2009)
  13. Nodehi, M.A., Davari, S.A., Ghandehari, R., Norambuena, M., Rodriguez, J.: Using virtual voltage vectors in predictive control of three-phase inverters for fixing common-mode voltage. In: 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1-6 (2020)
  14. Jiang, C., Du, G., Du, F., Lei, Y.: A fast model predictive control with fxed switching frequency based on virtual space vector for three-phase inverters. In: 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), pp. 1-7 (2018)
  15. Lyu, J., Ma, B., Yan, H., Ji, Z., Ding, J.: A modifed finite control set model predictive control for 3L-NPC grid-connected inverters using virtual voltage vectors. J. Electr. Eng. 15(1), 121-133 (2020) https://doi.org/10.1007/s42835-019-00305-8
  16. Xu, Y., Hu, M., Yan, Z., Zhang, Y., Ma, H.: A three-vector-based model predictive fux control for PMSM drives. J. Electr. Eng. 16(5), 2673-2684 (2021) https://doi.org/10.1007/s42835-021-00815-4
  17. Du, W., Li, W., Lu, E., Sheng, L., Chen, Y., Jiang, S.: An improved model predictive torque control strategy of a shearer semi-direct permanent magnet synchronous motor based on duty cycle. J. Electr. Eng. Technol. 16(5), 2585-2597 (2021) https://doi.org/10.1007/s42835-021-00780-y
  18. Xiao, D., Alam, K.S., Norambuena, M., Rahman, M.F., Rodriguez, J.: Modifed modulated model predictive control strategy for a grid-connected converter. IEEE Trans. Ind. Electron. 68(1), 575-585 (2021) https://doi.org/10.1109/tie.2020.2965457
  19. Tarisciotti, L., et al.: Model predictive control for shunt active filters with fxed switching frequency. IEEE Trans. Ind. Electron. 53(1), 296-304 (2017)
  20. Tarisciotti, L., Zanchetta, P., Watson, A., Wheeler, P., Clare, J.C., Bifaretti, S.: Multiobjective modulated model predictive control for a multilevel solid-state transformer. IEEE Trans. Ind. Electron. 51(5), 4051-4060 (2015)
  21. Tarisciotti, L., Zanchetta, P., Watson, A., Bifaretti, S., Clare, J.C.: Modulated model predictive control for a seven-level cascaded H-bridge back-to-back converter. IEEE Trans. Ind. Electron. 61(10), 5375-5383 (2014) https://doi.org/10.1109/TIE.2014.2300056
  22. Falkowski, P., Sikorski, A.: Finite control set model predictive control for grid-connected AC-DC converters with LCL filter. IEEE Trans. Ind. Electron. 65(4), 2844-2852 (2018) https://doi.org/10.1109/tie.2017.2750627
  23. Falkowski, P., Sikorski, A.: Dead-time compensation in a new FCS-MPC of an AC/DC converter with a LCL filter. In: 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), pp. 1-6 (2016)
  24. Guzman, R., de Vicuna, L.G., Camacho, A., Miret, J., Rey, J.M.: Receding-horizon model-predictive control for a three-phase VSI with an LCL filter. IEEE Trans. Ind. Electron. 66(9), 6671-6680 (2019) https://doi.org/10.1109/tie.2018.2877094
  25. Freddy, T.K.S., Lee, J., Moon, H., Lee, K., Rahim, N.A.: Modulation technique for single-phase transformerless photovoltaic inverters with reactive power capability. IEEE Trans. Ind. Electron. 64(9), 6989-6999 (2017) https://doi.org/10.1109/TIE.2017.2686366
  26. Zhang, L., Sun, K., Xing, Y., Xing, M.: H6 transformerless full-bridge PV grid-tied inverters. IEEE Trans. Power Electron. 29(3), 1229-1238 (2014) https://doi.org/10.1109/TPEL.2013.2260178
  27. Gotekar, P.S., Muley, S.P., Kothari, D.P., Umre, B.S.: Comparison of full bridge bipolar, H5, H6 and HERIC inverter for single phase photovoltaic systems-a review. In: 2015 Annual IEEE India Conference (INDICON), pp. 1-6 (2015)
  28. Cho, Y.: Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller. Renew. Energy 101, 168-181 (2017) https://doi.org/10.1016/j.renene.2016.08.050