DOI QR코드

DOI QR Code

Position and speed estimation for high speed permanent magnet synchronous motors using wideband synchronous fundamental-frequency extraction filters

  • Song, Jie (Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Wang, Huizhen (Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhang, Chunjuan (Shanghai Aerospace Equipment Manufacturing Co., Ltd) ;
  • Liu, Weifeng (Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Shen, Yirong (Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics)
  • Received : 2021.05.18
  • Accepted : 2021.11.24
  • Published : 2022.02.20

Abstract

The non-ideal factors such as the inherent chattering of a sliding mode observer (SMO), the delay of a control algorithm, and the dead-time effect give rise to the harmonic error of position estimation. To improve the performance of the position observation of high-speed permanent magnet synchronous motors (HSPMSMs), a wideband synchronous fundamental-frequency extraction filter (WSFEF) is proposed. On this basis, a novel signal processing method consisting of a WSFEF-PLL is applied to extract the fundamental frequency signal of the estimated back electromotive force (EMF). The application of a phase-locked loop (PLL) ensures that the resonance frequency of the WSFEF is adaptive, which is essential for the variable-speed operation in sensorless HSPMSM drive systems. Using the WSFEF-PLL in a SMO-based position estimator, the rotor position estimation error caused by the harmonics contained in the back EMF can be effectively eliminated, which contributes to improving the accuracy and dynamic performance of the rotor position estimation. Simulations and experiments verify the feasibility and effectiveness of this method.

Keywords

References

  1. Song, X., Han, B., Zheng, S., Chen, S.: A novel sensorless rotor position detection method for high-speed surface PM motors in a wide speed range. IEEE Trans. on Power Electron. 33(8), 7083-7093 (2018) https://doi.org/10.1109/TPEL.2017.2753289
  2. Almarhoon, A.H., Zhu, Z.Q., Xu, P.L.: Improved pulsating signal injection using zero-sequence carrier voltage for sensorless control of dual three-phase PMSM. IEEE Trans. Energy Convers. 32(2), 436-446 (2017) https://doi.org/10.1109/TEC.2017.2657743
  3. Gu, X., Wang, F., Zhang, Z., Deng, Z.: Correction of rotor position estimation error for high-speed perm-anent magnet synchronous motor sensorless drive system based on minimum-current-tracking method. IEEE Trans. Ind. Electron. 67(10), 8271-8280 (2020) https://doi.org/10.1109/tie.2019.2950839
  4. Liang, D., Li, J., Qu, R., Kong, W.: Adaptive second-order slidingmode observer for PMSM sensorless control considering VSI nonlinearity. IEEE Trans. Power Electron. 33(10), 8994-9004 (2018) https://doi.org/10.1109/tpel.2017.2783920
  5. Yousef-Talouki, A., Pescetto, P., Pellegrino, G.: Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening. IEEE Trans. Ind. Appl. 53(4), 3598-3608 (2017) https://doi.org/10.1109/TIA.2017.2679689
  6. Almarhoon, A.H., Zhu, Z.Q., Xu, P.: Improved rotor position estimation accuracy by rotating carrier signal injection utilizing zero-sequence carrier voltage for dual three-phase PMSM. IEEE Trans. Ind. Electron. 64(6), 4454-4462 (2017) https://doi.org/10.1109/TIE.2016.2561261
  7. Nair, R., Narayanan, G.: Stator flux based model reference adaptive observers for sensorless vector control and direct voltage control of doubly-fed induction generator. IEEE Trans. Ind. Appl. 56(4), 3776-3789 (2020) https://doi.org/10.1109/tia.2020.2988426
  8. Yildiz, R., Barut, M., Zerdali, E.: A comprehensive comparison of extended and unscented kalman filters for speed-sensorless control applications of induction motors. IEEE Trans. Ind. Informat. 16(10), 6423-6432 (2020) https://doi.org/10.1109/tii.2020.2964876
  9. Apte, A., Joshi, V.A., Mehta, H., Walambe, R.: Disturbance-observer-based sensorless control of PMSM using integral state feedback controller. IEEE Trans. Power Electron. 35(6), 6082-6090 (2020) https://doi.org/10.1109/tpel.2019.2949921
  10. Wu, A., Sun, X., Wang, J.: A rotor flux observer of permanent magnet synchronous motors with adaptive flux compensation. IEEE Trans. Energy Convers. 34(4), 2106-2117 (2019) https://doi.org/10.1109/tec.2019.2932787
  11. Shen, H., Luo, X., Liang, G., Shen, A.: A robust dynamic decoupling control scheme for PMSM current loops based on improved sliding mode observer. Journal of Power Electronics. 18(6), 1708-1719 (2018) https://doi.org/10.6113/JPE.2018.18.6.1708
  12. Lu, W., et al.: A new load torque identification sliding mode observer for permanent magnet synchronous machine drive system. IEEE Trans. Power Electron. 34(8), 7852-7862 (2019) https://doi.org/10.1109/tpel.2018.2881217
  13. Jung, S., Ha, J.: Consideration of the carrier based signal injection method in three shunt sensing inverters for sensorless motor control. Journal of Power Electronics. 16(5), 1791-1801 (2016) https://doi.org/10.6113/JPE.2016.16.5.1791
  14. Xu, P.L., Zhu, Z.Q.: Carrier signal injection-based sensorless control for permanent magnet synchronous machine drives considering machine parameter asymmetry. IEEE Trans. Ind. Electron. 63(5), 2813-2824 (2016) https://doi.org/10.1109/TIE.2015.2510979
  15. Zaky, M.S., Metwaly, M.K., Azazi, H.Z., Deraz, S.A.: A new adaptive SMO for speed estimation of sensorless induction motor drives at zero and very low frequencies. IEEE Trans. Ind. Electron. 65(9), 6901-6911 (2018) https://doi.org/10.1109/tie.2018.2793206
  16. Liang, D., Li, J., Qu, R.: Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation. IEEE Trans. Ind. Appl. 53(4), 3672-3682 (2017) https://doi.org/10.1109/TIA.2017.2690218
  17. Zhang, G., Wang, G., Xu, D., Zhao, N.: ADALINE-network-based PLL for position sensorless interior permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 31(2), 1450-1460 (2016) https://doi.org/10.1109/TPEL.2015.2424256
  18. Yi, P., Sun, Z., Wang, X.: Research on PMSM harmonic coupling models based on magnetic co-energy. IET Electric Power Appl. 13(4), 571-579 (2019) https://doi.org/10.1049/iet-epa.2018.5196
  19. Huang, J., Zhang, M., Ri, S., Xiong, C., Li, Z., Kang, Y.: High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Trans. Ind. Electron. 67(3), 2030-2041 (2020) https://doi.org/10.1109/tie.2019.2903778
  20. Nguyen, A.T., Rafaq, M.S., Choi, H.H., Jung, J.: A model reference adaptive control based speed controller for a surface-mounted permanent magnet synchronous motor drive. IEEE Trans. Ind. Electron. 65(12), 9399-9409 (2018) https://doi.org/10.1109/TIE.2018.2826480
  21. Xu, W., Qu, S., Zhao, L., Zhang, H.: An improved adaptive sliding mode observer for middle- and high-speed rotor tracking. IEEE Trans. Power Electron. 36(1), 1043-1053 (2021) https://doi.org/10.1109/tpel.2020.3000785
  22. Tang, Q., Chen, D., He, X.: Integration of improved flux linkage observer and I-f starting method for wide-speed-range sensorless SPMSM drives. IEEE Trans. Power Electron. 35(8), 8374-8383 (2020) https://doi.org/10.1109/tpel.2019.2963208
  23. Jung, S., Nam, K.: PMSM control based on edge-field hall sensor signals through ANF-PLL processing. IEEE Trans. Ind. Electron. 58(11), 5121-5129 (2011) https://doi.org/10.1109/TIE.2011.2116850
  24. Yin, G., Guo, L., Li, X.: An amplitude adaptive notch filter for grid signal processing. IEEE Trans. Power Electron. 28(6), 2638-2641 (2013) https://doi.org/10.1109/TPEL.2012.2226752
  25. Park, Y., Sul, S.: A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity. IEEE Trans. Power Electron. 27(12), 4837-4846 (2012) https://doi.org/10.1109/TPEL.2012.2192451
  26. Wang, G., Zhan, H., Zhang, G., Gui, X., Xu, D.: Adaptive compensation method of position estimation harmonic error for EMF-based observer in sensorless IPMSM drives. IEEE Trans. Power Electron. 29(6), 3055-3064 (2014) https://doi.org/10.1109/TPEL.2013.2276613
  27. Song, X., Fang, J., Han, B.: High-precision rotor position detection for high-speed surface PMSM drive based on linear hall-effect sensors. IEEE Trans. Power Electron. 31(7), 4720-4731 (2016) https://doi.org/10.1109/TPEL.2015.2479642