DOI QR코드

DOI QR Code

백악기 구례분지 구례층군의 쇄설성 저어콘 U-Pb 연대: 퇴적시기와 퇴적물 기원지에 대한 의미

Detrital Zircon U-Pb Ages of the Cretaceous Gurye Group, Gurye Basin, Korea: Implications for the Depositional Age and Provenance

  • 김유희 (부산대학교 지질환경과학과) ;
  • 채용운 (부산대학교 지질환경과학과) ;
  • 하수진 (부산대학교 지질환경과학과) ;
  • 최태진 (한국교원대학교 지구과학교육과) ;
  • 임현수 (부산대학교 지질환경과학과)
  • Kim, Youhee (Department of Geological Sciences, Pusan National University) ;
  • Chae, Yong-Un (Department of Geological Sciences, Pusan National University) ;
  • Ha, Sujin (Department of Geological Sciences, Pusan National University) ;
  • Choi, Taejin (Department of Earth Science Education, Korean National University of Education) ;
  • Lim, Hyoun Soo (Department of Geological Sciences, Pusan National University)
  • 투고 : 2022.06.22
  • 심사 : 2022.06.29
  • 발행 : 2022.06.30

초록

백악기 구례분지 구례층군에 대한 쇄설성 저어콘 레이저삭박 다검출기 유도결합플라즈마 질량분석기(LA-MC-ICP-MS) U-Pb 연대측정을 수행하였다. 구례층군은 하부로부터 수평리층, 금정리층, 토금층, 오봉산층으로 구성되며, 이번 연구에서는 연대측정을 위해 총 5개의 시료를 채취하였다. 그 결과 구례층군의 최하부 지층인 수평리층과 최상부 지층인 오봉산층에서는 각각 선캄브리아시대와 후기 백악기 저어콘들만이 산출되어 비교적 좁은 연대 분포 범위를 보였다. 그러나, 금정리층 상하부와 토금층에서는 선캄브리아시대부터 백악기까지의 비교적 넓은 저어콘 연대 분포를 나타냈다. 백악기 저어콘이 산출되지 않은 수평리층을 제외한 각 퇴적층의 가장 젊은 쇄설성 저어콘 U-Pb 연령은 금정리층 하부에서 약 107.4 Ma, 금정리층 상부에서 약 104.6 Ma, 토금층에서 약 97.7 Ma, 오봉산층에서 약 88.5 Ma로 계산되었다. 이는 구례층군의 퇴적시기가 대략 전기 백악기 말의 알바절(Albian)에서 후기 백악기의 코냑절(Coniacian)로 제한될 수 있음을 지시한다. 또한 각 지층별 쇄설성 저어콘 연령 분포에 근거한 구례층군 퇴적물 기원지는 분지의 진화 과정 동안 인근의 영남육괴에서부터 옥천대의 일부까지 확장되어 변화했을 것으로 해석되며, 구례층군을 구성하는 퇴적층들의 백악기 저어콘 산출 양상은 백악기 동안 고태평양판의 슬랩 퇴각 작용을 잘 반영하는 것으로 보인다.

Detrital zircon LA-MC-ICP-MS U-Pb dating of the Cretaceous Gurye Group, Gurye Basin, was carried out. Gurye Group consists of Supyeongri, Geumjeongri, Togeum, and Obongsan formations in ascending order, and five samples were collected for age dating. Based on the dating results, the lowermost Supyeongri and the uppermost Obongsan formations show narrow age ranges. Only Precambrian and Late Cretaceous zircons were found in the Supyeongri and Obongsan formations, respectively. However, the upper and lower Geumjeongri, and Togeum formations show wide age ranges from the Precambrian to Cretaceous. The youngest detrital zircon U-Pb ages of each formation except the Supyeongri Formation, which lacks Cretaceous zircon, were calculated to be ca. 107.4 Ma in the lower Geumjeongri Formation, ca. 104.6 Ma in the upper Geumjeongri Formation, ca. 97.7 Ma in the Togeum Formation, and ca. 88.5 Ma in the Obongsan Formation. Such results indicate that the depositional age of the Gurye Group can be constrained from the Lower Cretaceous Albian to the Upper Cretaceous Coniacian. Based on the distribution of the detrital zircon ages from each formation, the source area of the Gurye Group is interpreted to have been extended from the adjacent Youngnam Massif to the Okcheon Belt throughout the basin evolution. The increase of the Cretaceous zircon with time is thought to reflect the slab roll-back of the proto-Pacific plate during the Cretaceous.

키워드

과제정보

이 논문은 한국연구재단(NRF-2020R1A2C1012522, 2020R111A3072160)에 의해 지원되었습니다. 심사과정에서 좋은 의견을 주신 심사위원과 편집위원께 감사드립니다.

참고문헌

  1. Chae, Y.-U., Lim, J.D., Kim, C.-B., Kim, K.S., Ha, S., and Lim, H.S., 2020, Detrital zircon U-Pb ages of the uppermost Jinju Formation in the Natural Monument No. 534'Tracksite of Pterosaurs, Birds, and Dinosaurs in Hotandong, Jinju', Korea. Journal of the Korean Earth Science Society, 41(4), 367-380. https://doi.org/10.5467/JKESS.2020.41.4.367
  2. Chae, Y.-U., Ha, S., Choi, T., Kim, C.-B., Kim, K.S., and Lim, H.S., 2021, Detrital zircon provenance of the Lower Cretaceous Duwon Formation based on LA-MCICPMS U-Pb ages and morphology in the Goheung area, southern Korea: A new supply mechanism of Early Cretaceous zircons. Cretaceous Research, 128, 104955. https://doi.org/10.1016/j.cretres.2021.104955
  3. Chang, J.-H., 1996, A Geomorphic Study on Sangdong Basin around Gurye Region, in Korea. Applied Geography, 19, 1-24 (in Korean with English abstract). https://doi.org/10.1016/S0143-6228(98)00031-9
  4. Gansecki, C.A., Mahood, G.A., and McWilliams, M., 1998, New ages for the climactic eruptions at Yellowstone: single-crystal 40Ar/39Ar dating identifies contamination. Geology, 26(4), 343-346. https://doi.org/10.1130/0091-7613(1998)026<0343:NAFTCE>2.3.CO;2
  5. Hartmann, L.A. and Santos, J.O.S., 2004, Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. Geology, 32(1), 73-76. https://doi.org/10.1130/g20007.1
  6. Hong, S.H., and Hwang, S.K., 1984, Geological Report of the Gurye Sheet (1:50,000). Korea Institute of Energy and Resources, p 67.
  7. Hoskin, P.W. and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1), 27-62. https://doi.org/10.2113/0530027
  8. Hwang, S.K., Kim, S.W., Kee, W.S., and Kim, J.J., 2019, U-Pb zircon ages and division of the Cretaceous volcanic arc in the Korean Peninsula: Spatiotemporal evolution of the arc volcanism. Journal of the Geological Society of Korea, 55(5), 595-619 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2019.55.5.595
  9. Jung, H.E., Ahn, K.S., and Son, J.M., 2019, Morphology of Columnar Joints on Andesite in the Yeosu, Suncheon and Gurye Area in Jeollanam-do. The Journal of Korean Island, 31(2), 209-226 (in Korean with English abstract).
  10. Kim, K.S., Lockley, M.G., Kim, J.Y., and Seo, S.J., 2012, The smallest dinosaur tracks in the world: occurrences and significance of Minisauripus from East Asia. Ichnos, 19(1-2), 66-74. https://doi.org/10.1080/10420940.2012.664052
  11. Kim, M.G. and Lee, Y.I., 2018, The Pyeongan Supergroup (upper Paleozoic-Lower Triassic) in the Okcheon Belt, Korea: A review of stratigraphy and detrital zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth-Science Reviews, 185, 1170-1186. https://doi.org/10.1016/j.earscirev.2018.09.006
  12. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K., and Kim, S.J., 2016, SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos, 262, 88-106. https://doi.org/10.1016/j.lithos.2016.06.027
  13. Kim, S.W., Kwon, S., Yi, K., and Santosh, M., 2014, Arc magmatism in the Yeongnam massif, Korean Peninsula: Imprints of Columbia and Rodinia super continents. Gondwana Research, 26, 1009-1027. https://doi.org/10.1016/j.gr.2013.08.020
  14. Kiminami, K. and Imaoka, T., 2013, Spatiotemporal variations of Jurassic-Cretaceous magmatism in eastern Asia (Tan-Lu Fault to SW Japan): evidence for flat-slab subduction and slab rollback. Terra Nova, 25(5), 414-422. https://doi.org/10.1111/ter.12051
  15. Lee, D.-W., 1999, Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Island Arc, 8(2), 2.
  16. Lee, S.H., Oh, C.W., and Kawaguchi, K., 2021, Cretaceous igneous activity and tectonic evolution of the northeast Asia including the Korean Peninsula. Journal of the Geological Society of Korea, 57(4), 589-614 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2021.57.4.589
  17. Lee, Y.U. and Song, J.H., 2007, The Stratigraphy and the Depositional Environments of the Cretaceous Gurye Basin, Jeollanamdo, Korea. Journal of the Geological Society of Korea. 43(3), 265-279 (in Korean with English abstract).
  18. Lee, Y.U., 2008, Dinosaur skeletons from the Cretaceous Gurye Basin, Jellanam-do, Korea. Journal of the Geological Society of Korea. 44(3), 353-357 (in Korean with English abstract).
  19. Lockley, M.G., Xing, L., Kim, J.Y., and Matsukawa, M., 2014, Tracking Lower Cretaceous dinosaurs in China: a new database for comparison with ichnofaunal data from Korea, the Americas, Europe, Africa and Australia. Biological Journal of the Linnean Society, 113(3), 770-789. https://doi.org/10.1111/bij.12308
  20. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, p. 77. Special Publication 4.
  21. Machette, M.N., 1985, Calcic soils of the southwestern United States: In Weide, D. L. (Ed.) Soils and Quaternary Geology of the the Southwestern United States. Geological Society of America Special Paper, 203, 1-21.
  22. Matsukawa, M., Shibata, K., Kukihara, R., Koarai, K., and Lockley, M.G., 2005, Review of Japanese dinosaur track localities: implications for ichnotaxonomy, paleogeography and stratigraphic correlation. Ichnos, 12(3), 201-222. https://doi.org/10.1080/10420940591009231
  23. Miall, A.D., 2000, Principles of sedimentary basin analysis (third, updated and enlarged edition). Springer Science & Business Media, 616p.
  24. Nam, K.S., You, H.S., and Lee, J.D., 1989, Geological Report of the Hadong Sheet (1:50,000). Korea Institute of Energy and Resources, p 45.
  25. Park, J.H., Park, D.H., Won, B.H., Kang, S.S., and Kim, C.B., 2015, K-Ar ages of the volcanic rocks from the Cretaceous strata in Gurye area, Jeonnam Province, South Korea. Journal of the Korean Earth Science Society, 36(1), 27-35 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2015.36.1.27
  26. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., 2011, Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508-2518. https://doi.org/10.1039/c1ja10172b
  27. Ryang, W.-H., 2013, Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. Journal of the Geological Society of Korea, 49, 31-45 (in Korean with English abstract).
  28. Slama, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plesovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249 (1-2), 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  29. Son, C.M., Lee, S.M., Won, C.G., Chang, K.H., and Kim, Y.C., 1964, Explanatory Text of the Geological Map of Hwagae Sheet (1:50,000). Kyeongsang Nam Do Korea, p 41.
  30. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1), 1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
  31. Xing, L., Li, D., Harris, J.D., Bell, P.R., Azuma, Y., Fujita, M., Lee, Y.N., and Currie, P.J., 2013, A new deinonychosaurian track from the Lower Cretaceous Hekou group, Gansu Province, China. Acta Palaeontologica Polonica, 58(4), 723-730.
  32. You, H.S., Kim, Y.J., and Park, B.Y., 1993, Geological Report of the Koemok Sheet (1:50,000). Korea Institute of Geology, Mining and Materials, p 56.