DOI QR코드

DOI QR Code

Drug Discovery Platform Using Organoids

오가노이드를 활용한 약물 검색 플랫폼

  • Ju Eun Maeng (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Soon-Chan Kim (Laboratory of Cell Biology, Cancer Research Institute, Seoul National University) ;
  • Myoung-Hyun Song (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Nahyun Jeong (Laboratory of Cell Biology, Cancer Research Institute, Seoul National University) ;
  • Ja-Lok Ku (Department of Biomedical Sciences, Seoul National University College of Medicine)
  • 맹주은 (서울대학교 의과대학 의과학과) ;
  • 김순찬 (서울대학교 의과대학 암연구소 세포생물학연구실) ;
  • 송명현 (서울대학교 의과대학 의과학과) ;
  • 정나현 (서울대학교 의과대학 암연구소 세포생물학연구실) ;
  • 구자록 (서울대학교 의과대학 의과학과)
  • Received : 2022.11.08
  • Accepted : 2022.11.22
  • Published : 2022.12.01

Abstract

Gastrointestinal cancer accounts for one-third of the overall cancer occurrence worldwide. Pancreatic ductal adenocarcinoma (PDAC) is a type of gastrointestinal cancer that is known to be one of the most fatal among all cancer types, with a 5-year survival rate of less than 8%. Chemotherapy combined with surgical resection is its probable curative option. However, surgery is accessible for only 10-15% of patients diagnosed with PDAC. Organoids show self-organizing capacities and resemble the original tissue in terms of morphology and function. Organoids can also be cultured with high effectiveness from tumor tissues derived from each patient, making them an extremely fitting model for translational uses and improving personalized cancer medicine. Enhancing drug screening platforms is necessary to apply personalized medicinebased organoids in clinical settings.

Keywords

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. Erratum in: CA Cancer J Clin 2020;70:313. https://doi.org/10.3322/caac.21492
  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7-30. https://doi.org/10.3322/caac.21442
  3. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med 2014;371:2140-2141. https://doi.org/10.1056/NEJMc1412266
  4. Baker LA, Tiriac H, Clevers H, Tuveson DA. Modeling pancreatic cancer with organoids. Trends Cancer 2016;2:176-190. https://doi.org/10.1016/j.trecan.2016.03.004
  5. Moreira L, Bakir B, Chatterji P, Dantes Z, Reichert M, Rustgi AK. Pancreas 3D organoids: current and future aspects as a research platform for personalized medicine in pancreatic cancer. Cell Mol Gastroenterol Hepatol 2017;5:289-298. https://doi.org/10.1016/j.jcmgh.2017.12.004
  6. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer 2018;18:407-418. https://doi.org/10.1038/s41568-018-0007-6
  7. Maeng JE, Seo HY, Kim SC, Ku JL. Novel drug screening platform: tumor organoid. Korean J Pancreas Biliary Tract 2021;26:233-240. https://doi.org/10.15279/kpba.2021.26.4.233
  8. Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science 2019;364:952-955. https://doi.org/10.1126/science.aaw6985
  9. Broutier L, Andersson-Rolf A, Hindley CJ, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc 2016;11:1724-1743. https://doi.org/10.1038/nprot.2016.097
  10. Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015;160:324-338. https://doi.org/10.1016/j.cell.2014.12.021
  11. Tiriac H, Belleau P, Engle DD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov 2018;8:1112-1129. https://doi.org/10.1158/2159-8290.CD-18-0349
  12. Tiriac H, Bucobo JC, Tzimas D, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointest Endosc 2018;87:1474-1480. https://doi.org/10.1016/j.gie.2017.12.032
  13. Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A 2019;116:26580-26590. https://doi.org/10.1073/pnas.1911273116
  14. Tiriac H, Plenker D, Baker LA, Tuveson DA. Organoid models for translational pancreatic cancer research. Curr Opin Genet Dev 2019;54:7-11. https://doi.org/10.1016/j.gde.2019.02.003
  15. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 2003;9:4227-4239.
  16. Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437-450. https://doi.org/10.1016/s1535-6108(03)00309-x
  17. Greggio C, De Franceschi F, Figueiredo-Larsen M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 2013;140:4452-4462. https://doi.org/10.1242/dev.096628
  18. Huch M, Bonfanti P, Boj SF, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 2013;32:2708-2721. https://doi.org/10.1038/emboj.2013.204
  19. Huang L, Holtzinger A, Jagan I, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med 2015;21:1364-1371. https://doi.org/10.1038/nm.3973
  20. Ootani A, Li X, Sangiorgi E, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 2009;15:701-706. https://doi.org/10.1038/nm.1951
  21. Clevers H. Modeling development and disease with organoids. Cell 2016;165:1586-1597. https://doi.org/10.1016/j.cell.2016.05.082
  22. Ohlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 2017;214:579-596. https://doi.org/10.1084/jem.20162024
  23. Biffi G, Oni TE, Spielman B, et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 2019;9:282-301. https://doi.org/10.1158/2159-8290.CD-18-0710
  24. Sahin IH, Askan G, Hu ZI, O'Reilly EM. Immunotherapy in pancreatic ductal adenocarcinoma: an emerging entity? Ann Oncol 2017;28:2950-2961. https://doi.org/10.1093/annonc/mdx503
  25. Kim SC, Park JW, Seo HY, et al. Multifocal organoid capturing of colon cancer reveals pervasive intratumoral heterogenous drug responses. Adv Sci (Weinh) 2022;9:e2103360. https://doi.org/10.1002/advs.202103360
  26. Jeong N, Kim SC, Park JW, et al. Multifocal organoids reveal clonal associations between synchronous intestinal tumors with pervasive heterogeneous drug responses. NPJ Genom Med 2022;7:42. https://doi.org/10.1038/s41525-022-00313-0
  27. Song MH, Park JW, Kim MJ, et al. Colon cancer organoids using monoclonal organoids established in four different lesions of one cancer patient reveal tumor heterogeneity and different real-time responsiveness to anticancer drugs. Biomed Pharmacother 2022;152:113260. https://doi.org/10.1016/j.biopha.2022.113260
  28. Boj SF, Hwang CI, Baker LA, Engle DD, Tuveson DA, Clevers H. Model organoids provide new research opportunities for ductal pancreatic cancer. Mol Cell Oncol 2015;3:e1014757. https://doi.org/10.1080/23723556.2015.1014757
  29. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 2009;4:1670-1680. https://doi.org/10.1038/nprot.2009.171
  30. Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014;159:176-187. https://doi.org/10.1016/j.cell.2014.08.016
  31. Walsh AJ, Cook RS, Skala MC. Functional optical imaging of primary human tumor organoids: development of a personalized drug screen. J Nucl Med 2017;58:1367-1372. https://doi.org/10.2967/jnumed.117.192534
  32. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603-607. Erratum in: Nature 2012;492:290. Erratum in: Nature 2019;565:E5-E6. https://doi.org/10.1038/nature11003
  33. Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 2011;10:179-187. https://doi.org/10.1038/nrd3385
  34. Hou S, Tiriac H, Sridharan BP, et al. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov 2018;23:574-584. https://doi.org/10.1177/2472555218766842
  35. van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015;161:933-945. https://doi.org/10.1016/j.cell.2015.03.053
  36. Gleeson FC, Kipp BR, Kerr SE, et al. Characterization of endoscopic ultrasound fine-needle aspiration cytology by targeted next-generation sequencing and theranostic potential. Clin Gastroenterol Hepatol 2015;13:37-41. https://doi.org/10.1016/j.cgh.2014.10.017
  37. Zutter MM, Bloom KJ, Cheng L, et al. The cancer genomics resource list 2014. Arch Pathol Lab Med 2015;139:989-1008. https://doi.org/10.5858/arpa.2014-0330-CP