Acknowledgement
This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2C1007788).
References
- Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Methodol 1996;58:267-288.
- Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by Lasso penalized logistic regression. Bioinformatics 2009;25:714-721. https://doi.org/10.1093/bioinformatics/btp041
- Ogutu JO, Piepho HP. Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group Lasso, sparse group Lasso, group MCP and group SCAD. BMC Proc 2014;8:S7.
- Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Series B Stat Methodol 2006;68:49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Simon N, Friedman J, Hastie T, Tibshirani R. A sparse-group Lasso. J Comput Graph Stat 2013;22:231-245. https://doi.org/10.1080/10618600.2012.681250
- Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat 2009;37:3468-3497.
- Wang H, Leng C. A note on adaptive group Lasso. Comput Stat Data Anal 2008;52:5277-5286. https://doi.org/10.1016/j.csda.2008.05.006
- Park M, Kim D, Moon K, Park T. Integrative analysis of multi-omics data based on blockwise sparse principal components. Int J Mol Sci 2020;21:8202.
- Friedman J, Hastie T, Tibshirani R. A note on the group Lasso and a sparse group Lasso. Preprint at https://doi.org/10.48550/ arXiv.1001.0736 (2010).
- Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1-22.
- Yang Y, Zou H. Package 'ggLasso': group Lasso penalized learning using a unified BMD algorithm. Vienna: R Project for Statistical Computing, 2020.
- Simon F, Friedman J, Hastie T, Tibshirani R. Package 'SGL': fit a GLM (or Cox Model) with a combination of Lasso and group Lasso regularization. R package version 1.3. Vienna: R Project for Statistical Computing, 2019.
- Li X. ALL: a data package. Vienna: R Project for Statistical Computing, 2022.