DOI QR코드

DOI QR Code

Corrosion behaviors of plasma electrolytic oxidation (PEO) treated high-silicon aluminum alloys

  • Park, Deok-Yong (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Chang, Chong-Hyun (California NanoSystems Institute, University of California) ;
  • Oh, Yong-Jun (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Myung, Nosang V. (Department of Chemical and Biomolecular Engineering, University of Notre Dame) ;
  • Yoo, Bongyoung (Department of Materials Engineering, Hanyang University)
  • Received : 2022.06.03
  • Accepted : 2022.06.18
  • Published : 2022.06.30

Abstract

Ceramic oxide layers successfully were formed on the surface of cast Al alloys with high Si contents using plasma electrolytic oxidation (PEO) process in electrolytes containing Na2SiO3, NaOH, and additives. The microstructure of the oxide layers was systematically analyzed using scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM), X-ray diffraction patterns (XRD), and energy X-ray dispersive spectroscopy (EDS). XRD analysis indicated that the PEO untreated high-silicon Al alloys (i.e., 17.1 and 11.7 wt.% Si) consist of Al, Si and Al2Cu phases whereas Al2Cu phase selectively disappeared after PEO treatment. PEO process yielded an amorphous oxide layer with few second phases including γ-Al2O3 and Fe-rich phases. The corrosion behaviors of high-silicon Al alloys treated by PEO process were investigated using electrochemical impedance spectroscopy (EIS) and other electrochemical techniques (i.e., open circuit potential and polarization curve). Electroanalytical studies indicated that high-silicon Al alloys treated by PEO process have greater corrosion resistance than high-silicon alloys untreated by PEO process.

Keywords

References

  1. F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu, Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte, Corros. Sci., 49 (2007) 672-693. https://doi.org/10.1016/j.corsci.2006.05.046
  2. E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, G.E. Thompson, Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Appl. Surf. Sci., 255 (2008) 2830-2839. https://doi.org/10.1016/j.apsusc.2008.08.036
  3. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, M.C. Merino, AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles, Appl. Surf. Sci., 254 (2008) 6937-6942. https://doi.org/10.1016/j.apsusc.2008.04.100
  4. E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, Real-time imaging of coating growth during plasma electrolytic oxidation of titanium, Electrochim. Acta, 53 (2007) 1987-1994. https://doi.org/10.1016/j.electacta.2007.08.074
  5. I. S. Park, T. G. Woo, W. Y. Jeon, H. H. Park, M. H. Lee, T. S. Bae, K. W. Seol, Surface characteristics of titanium anodized in the four different types of electrolyte, Electrochim. Acta, 53 (2007) 863-870. https://doi.org/10.1016/j.electacta.2007.07.067
  6. L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, A. Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta, 49 (2004) 2085-2095. https://doi.org/10.1016/j.electacta.2003.11.027
  7. D. T. Asquith, A. L. Yerokhin, J. R. Yates, A. Matthews, The effect of combined shot-peening and PEO treatment on the corrosion performance of 2024 Al alloy, Thin Solid Films, 516 (2007) 417-421. https://doi.org/10.1016/j.tsf.2007.06.166
  8. C. E. Barchiche, E. Rocca, C. Juers, J. Hazan, J. Steinmetz, Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods, Electrochim. Acta, 53 (2007) 417-425. https://doi.org/10.1016/j.electacta.2007.04.030
  9. C. Blawert, V. Heitmann, W. Dietzel, H. M. Nykyforchyn, M. D. Klapkiv, Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys, Surf. Coat. Technol., 201 (2007) 8709-8714. https://doi.org/10.1016/j.surfcoat.2006.07.169
  10. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Characterisation of oxide Films Produced by Plasma Electrolytic Oxidation of a Ti-6Al-4V Alloy, Surf. Coat. Tech., 130 (2000) 195-206. https://doi.org/10.1016/S0257-8972(00)00719-2
  11. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122 (1999) 73-93. https://doi.org/10.1016/S0257-8972(99)00441-7
  12. A. L. Yerokhin, T. A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, A. Matthews, Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process, Surf. & Coat. Technol., 199 (2005) 150-157. https://doi.org/10.1016/j.surfcoat.2004.10.147
  13. G. Lv, W. Gu, H. Chen, W. Feng, M. Latif Khosa, L. Li, E. Niu, G. Zhang, S. Z. Yang, Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte, Appl. Surf. Sci., 253 (2006) 2947-2952. https://doi.org/10.1016/j.apsusc.2006.06.036
  14. G. Sundararajan, L. R. Krishna, Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology, Surf. Coat. Technol., 167 (2003) 269- 277. https://doi.org/10.1016/S0257-8972(02)00918-0
  15. R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, A. Matthews, Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current, Surf. Coat. Technol., 200 (2005) 1580-1586. https://doi.org/10.1016/j.surfcoat.2005.08.092
  16. F. Mecuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, G. Henrion, Diagnostics of an electrolytic microarc process for aluminium alloy oxidation, Surf. Coat. Technol., 200 (2005) 804-808. https://doi.org/10.1016/j.surfcoat.2005.01.076
  17. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebrukhov, P. S. Gordienko, S. Iwatsubo, A. Matsui, Composition and adhesion of protective coatings on aluminum, Surf. Coat. Technol., 145 (2001) 146-151. https://doi.org/10.1016/S0257-8972(01)01307-X
  18. Y. J. Guan, Y. Xia, G. Li, Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO, Surf. Coat. Technol., 202 (2008) 4602-4612. https://doi.org/10.1016/j.surfcoat.2008.03.031
  19. H. X. Li, V. S. Rudnev, X. H. Zheng, T. P. Yarovaya, R. G. Song, Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation, J. Alloys Compd., 462 (2008) 99-102. https://doi.org/10.1016/j.jallcom.2007.08.046
  20. S. H. Awad, H. C. Qian, Deposition of duplex Al2O3/TiN coatings on aluminum alloys for tribological applications using a combined microplasma oxidation (MPO) and arc ion plating (AIP), Wear, 260 (2006) 215-222. https://doi.org/10.1016/j.wear.2005.01.029
  21. J. A. Curran, H. Kalkanci, Y. Magurova, T.W. Clyne, Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications, Surf. Coat. Technol., 201 (2007) 8683- 8687. https://doi.org/10.1016/j.surfcoat.2006.06.050
  22. F. Xu, Y. Xia, G. Li, The mechanism of PEO process on Al-Si alloys with the bulk primary silicon, Appl. Surf. Sci., 255 (2009) 9531-9538. https://doi.org/10.1016/j.apsusc.2009.07.090
  23. K. Nogita, H. Yasuda, K. Yoshida, K. Uesugi, A. Takeuchi, Y. Suzuki, A.K. Dahle, Determination of strontium segregation in modified hypoeutectic Al-Si alloy by micro X-ray fluorescence analysis, Scripta Mater., 55 (2006) 787-790. https://doi.org/10.1016/j.scriptamat.2006.07.029
  24. K. B. Shah, S. Kumar, D. K. Dwivedi, Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%) Si-0.3% Mg alloys, Mater. Des., 28 (2007) 1968-1974. https://doi.org/10.1016/j.matdes.2006.04.012
  25. J. He, Q. Z. Cai, H. H. Luo, L. Yu, B.K.Wei, Influence of silicon on growth process of plasma electrolytic oxidation coating on Al-Si alloy, J. Alloys Compd., 471 (2009) 395- 399. https://doi.org/10.1016/j.jallcom.2008.03.114
  26. W. Xue, C. Wang, Y. LI, R. Chen T. Zhang, Analyses of microarc oxidation coatings formed on Si-containing cast aluminum Alloy in Silicate Solution, ISIJ Int., 42 (2002) 1273-1277. https://doi.org/10.2355/isijinternational.42.1273
  27. W. Xue, X. Shi, M. Hua, Y. Li, Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy, Appl. Surf. Sci., 253 (2007) 6118-6124. https://doi.org/10.1016/j.apsusc.2007.01.018
  28. M. M. Krishtal, Effect of structure of aluminum-silicon alloys on the process of formation and characteristics of oxide layer in microarc oxidizing, Met. Sci. Heat Treat., 46 (2004) 377-384. https://doi.org/10.1023/B:MSAT.0000049810.75325.f9
  29. M.H. Zhu, Z.B. Cai, X.Z. Lin, P.D. Ren, J. Tan, Z.R. Zhou, Fretting wear behaviour of ceramic coating prepared by micro-arc oxidation on Al-Si alloy, Wear, 263 (2007) 472- 480. https://doi.org/10.1016/j.wear.2007.01.050
  30. L. Wang, X. Nie, Silicon effects on formation of EPO oxide coatings on aluminum alloys, Thin Solid Films, 494 (2006) 211-218. https://doi.org/10.1016/j.tsf.2005.07.184
  31. M. Stern, A.L. Geary, Electrochemical polarization I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc., 104 (1957) 56-63. https://doi.org/10.1149/1.2428496
  32. Y. J. Oh, J. I Moon, J. H. Kim, Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis, Surf. Coat. Technol., 204 (2009) 141-148. https://doi.org/10.1016/j.surfcoat.2009.07.002
  33. D.Y. Hwang, Y.M. Kim, D. Y. Park, B. Yoo, D.H. Shin, Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation, Electrochim. Acta, 54 (2009) 5479-5485. https://doi.org/10.1016/j.electacta.2009.04.047