DOI QR코드

DOI QR Code

Developmental Characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) at Varing Temperatures

온도에 따른 아메리카왕거저리(Zophobas atratus)의 발육 특성

  • Kwak, Kyu-Won (Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Sun Young (Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Kyeong Yong (Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Yoon, Hyung Joo (Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA)
  • 곽규원 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김선영 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 이경용 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 윤형주 (농촌진흥청 국립농업과학원 농업생물부)
  • Received : 2022.04.13
  • Accepted : 2022.05.23
  • Published : 2022.06.01

Abstract

We investigated the developmental characteristics of super mealworm (Coleoptera: Tenebrionidae) at four different temperatures (25℃, 27℃, 30℃, and 33℃). The rearing conditions were 9L/15D, 65% RH, and 1,330 to 1,800 lux with wheat bran. The length of developmental period of 1 to 18 instars at each temperature showed that 30℃ was the shortest at 120.0±5.8 days, compared to that at 27℃ (132.6±10.7 days), 33℃ (136.5±9.2 days), and 25℃ (156.7±7.5 days). The larval developmental period was statistically significantly longer at 25℃, 27℃, and 30℃ compared to the length at 33℃. However, the death rate of larvae at 33℃ was 2.7-3.3 times higher than the rate at other temperatures. Body weight was heaviest at 30℃ followed by 27℃, 33℃, and 25℃. The patterns of head capsule, body capsule, and body length were similar to that of body weight. Regression analyses of developmental period, larval body weight, and length according to temperature revealed 29-30℃ as the most suitable temperature. The prepupa rate was 43.1% in 17 instars, 30.3% in 18 instars, 15.4% in 16 instars, 7.1% in 19 instars, 2.2% in 15 instars, and 1.9% in 20 instars, accounting for 88.8% in 16-18 instars. Prepupal period was longer at lower temperatures. For the average prepupal period of 15-18 instars, prepupa time was 18.8±1.9 days at 27℃, 18.8±2.3 days at 30℃, 23.0±2.4 days at 33℃, and 23.1±2.9 days at 25℃. The average pupal period of females and males was 11.1±2.2 and 11.6±2.4 days, respectively. The data indicate that the most suitable rearing temperature of super mealworm was 30℃.

국내에서 한시적 식용 곤충으로 등록된 아메리카왕거저리의 사육에 적합한 온도를 규명하고자 온도별 발육특성을 조사하였다. 25℃, 27℃, 30℃, 33℃ 등 4개의 온도(9L/15D, 65% R.H., 1330-1800 lux 조건)에서 1-18령까지 발육기간은 30℃가 120.0 ±5.8일로 가장 짧았고, 그 다음이 33℃ (132.6±10.7일), 27℃ (136.5±9.2일), 25℃ (156.7±7.5일) 순이었다. 30℃는 25℃보다 36.7일나 단축되었다. 33℃의 경우, 25℃, 27℃, 30℃에 비해서 폐사율이 2.7-3.3배나 높았다. 33℃를 제외하고 온도가 높을수록 발육기간이 단축되는 경향이었으며, 온도별 발육기간은 고도의 통계적 유의성을 나타내었다. 체중의 경우, 30℃가 가장 무거웠고 그 다음은 27℃, 33℃, 25℃ 순이었다. 두폭, 체폭, 체장도 체중과 같은 경향을 보여, 온도 간에 발육의 차이가 확인되었다. 온도와 발육기간, 체중, 체장에 대한 회귀분석 결과, 29-30℃가 가장 적합한 온도이었다. 온도별 전용율은 17령이 43.1%로 가장 높았고, 18령(30.3%), 16령(15.4%), 19령(7.1%), 20령(1.9%)순으로 88.8%가 16령-18령 사이에 전용이 되었다. 전용기간(15-20령)은 27℃와 30℃가 각각 18.8±1.9일, 18.8±2.3일이었고, 그 다음이 33℃ (23.0±2.4일), 25℃ (23.1±2.9일) 순으로 온도가 낮을수록 늦어지는 경향이었다. 번데기기간 또한 온도가 높을수록 짧아지는 경향을 나타내었다. 암수 간의 번데기 기간은 각각 11.1±2.2일, 11.6±2.4일로 차이가 없었다. 이상의 결과들로 볼 때 아메리카왕거저리의 발육에 적합한 온도는 30℃로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제명: 식용곤충 후보종 발굴 및 대량생산기술 개발, 세부과제번호: PJ01267002)를 수행하는 과정에서 얻은 결과를 바탕으로 작성하였다.

References

  1. Aksit, T., Cakmak, I., Ozer, G., 2007. Effect of temperature and photoperiod on development and fecundity of an acarophagous ladybird beetle, Stethorus gilvifrons. Phytoparasitica 35, 357-366. https://doi.org/10.1007/BF02980698
  2. Aribi, N., Quennedey, A., Pitoizet, N., Delbecque, J.-P., 1997. Ecdysteroid titres in a Tenebrionid beetle, Zophobas atratus: effects of grouping and isolation. J. Insect Physiol. 43, 815-821. https://doi.org/10.1016/S0022-1910(97)00029-2
  3. Connat, J.L., Delbecque, J.-P., Glitho, I., Delachambre, J., 1991. The onset of metamorphosis in Tenebrio molitor larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions. J. Insect Physiol. 37, 653-662. https://doi.org/10.1016/0022-1910(91)90042-X
  4. Feyereisen, R., 1985. Regulation of juvenile hormone titer: synthesis, in: Kerkut, G.A., Gilbert, L.I. (Eds), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon Press, Oxford, Vol 7, pp. 391-429.
  5. Ghaly, A.E., Alkoaik, F.N., 2009. The yellow mealworm as a novel source of protein. Am. J. Agric. Biol. Sci. 4, 319-331. https://doi.org/10.3844/ajabssp.2009.319.331
  6. Godfray, H.C.J., Crute, I.R., Haddad, L., Lawrence, D., Muir, J. F., Nisbett, N., Pretty, J., Robinson, S., Toulmin, C., Whiteley, R., 2010. The future of the global food system. Phil. Trans. R. Soc. B. 365, 2769-2777. https://doi.org/10.1098/rstb.2010.0180
  7. Kim, S., Kim, J.C., Lee, S.J., Kim, J.S., 2016. Establishment of optimal rearing conditions for the production of Tenebrio molitor Larvae. Kor. J. Appl. Entomol. 55, 421-429. https://doi.org/10.5656/KSAE.2016.11.0.041
  8. Kim, S., Park, H.-C., Kim, N., Park, I., 2018. Effect of photoperiod and temperature on the reproductive responses of Protaetia brevitarsis. Int. J. Indust. Entomol. 37, 90-94. https://doi.org/10.7852/IJIE.2018.37.2.90
  9. Kim, S.Y., Kim, H.G., Song, S.H., Kim, N.J., 2015. Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars. Int. J. Indust. Entomol. 30, 45-49. https://doi.org/10.7852/IJIE.2015.30.2.45
  10. Kwak, K.-W., Kim, S.Y., Ko, H.-J. Lee, K.Y., Song, J.-H., Yoon, H.J., 2021. Optimal hatching conditions of Zophobas atratus (Coleoptera: Tenebrionidae) eggs under various culture conditions. J. Asia-Pacific Entomol. 24, 1107-1115. https://doi.org/10.1016/j.aspen.2021.10.006
  11. Kwak, K.-W., Kim, S.Y., Lee, K.Y., Kim, Y.-S., Yoon, H.J., 2022. Maximizing the hatchability of Locusta migratoria (Orthoptera: Acrididae) eggs under artificial hatching conditions. Entomol. Res. 52, 90-98. https://doi.org/10.1111/1748-5967.12568
  12. Lim, J.R., Moon, H.C., Park, N.Y., Lee, S.S., Yoo, Y.J., 2019. Analysis of the developmental and ovipositional characteristics for interior mass-rearing of Gampsocleis ussuriensis Adelung. Kor. J. Appl. Entomol. 58, 381-387. https://doi.org/10.5656/KSAE.2019.11.0.050
  13. Ludwig, D., 1956. Effects of temperature and parental age on the life cycle of the mealworm Tenebrio molitor L. Ann. Ent. Sco. Am. 49, 12-15. https://doi.org/10.1093/aesa/49.1.12
  14. MacEvilly, C., 2000. Bugs in the system. Nutr. Bull. 25:267-268. https://doi.org/10.1046/j.1467-3010.2000.00068.x
  15. Megido, R.C., Sablon, L., Geuens, M., Brostaux, Y., Alabi, T., Blecker, C., Drugmand, D., Haubruge, E., Francis, F., 2013. Edible insects acceptance by Belgian consumers: promising attitude for entomophagy development. J. Sens. Stud. 29, 14-20. https://doi.org/10.1111/joss.12077
  16. Nakagaki, B.J., Defoliart, G.R., 1991. Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. J. Econ. Entomol. 84, 891-896. https://doi.org/10.1093/jee/84.3.891
  17. Nonaka, K., 2009. Feasting on insects. Entomol. Res. 39, 304-312. https://doi.org/10.1111/j.1748-5967.2009.00240.x
  18. Park, H.C., Jung, B.H., Han, T., Lee, Y.B., Kim, S.H., Kim, N.J., 2013. Taxonomy of introduced commercial insect, Zophobas atratus (Coleoptera; Tenebrionidae) and a comparison of DNA barcoding with similar tenebrionids, Promethis valgipes and Tenebrio molitor in Korea. J. Seric. Entomol. Sci. 51, 185-190. https://doi.org/10.7852/JSES.2013.51.2.185
  19. Price, P.W., 1997. Insect ecology. 3rd edition. John Wiley & Sons, Inc. New York.
  20. Quennedey, A., Aribi, N., Everaerts, C., Delbecque, J.-P., 1995. Postembryonic development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hormone analogue applications. J. Insect Physiol. 41, 143-152. https://doi.org/10.1016/0022-1910(94)00091-T
  21. Riddiford, L.M., 1976. Hormonal control of insect epidermal cell commitment in vitro. Nature 259, 115-117. https://doi.org/10.1038/259115a0
  22. Roff, D.A., 1992. The evolution of life histories: theory and analysis. Chapman & Hall. New York.
  23. Tschinkel, W.R., Willson, C.D., 1981. Inhibition of pupation due to crowding in some tenebrionid beetles. J. Exp. Zool. 176, 137-146. https://doi.org/10.1002/jez.1401760203
  24. Tyschchenko, V.P., Sheyk, B.A., 1986. Photoperiodic regulation of larval growth and pupation of Tenebrio molitor L. (Coleoptera: Tenebrionidae). Ent. Rev. 65, 35-46.
  25. Urs, K.C.D., Hopkins, T.L., 1973. Effect of moisture on growth rate and development of two strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. Res. 8, 291-297. https://doi.org/10.1016/0022-474X(73)90045-3
  26. Van Huis, A., 2013. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
  27. Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P., 2013. Edible insects: future prospects for food and feed security. FAO Forestry Paper 171. Food and Agriculture Organization of the United Nations, Rome, Italy.
  28. Whitman, D.W., Ananthakrishnan, T.N., 2009. Phenotypic plasticity of insects: mechanisms and consequences, 1st ed., Science publishers, New Hampshire.
  29. Yoo, J.M., Hwang, J.S., Goo, T.W., Yun, E.Y., 2013. Comparative analysis of nutritional and harmful components in Korean and Chinese mealworms (Tenebrio molitor). J. Kor. Soc. Food Sci. Nutr. 42, 249-254. https://doi.org/10.3746/JKFN.2013.42.2.249
  30. Yoon, H.J., Mah, Y.I., Moon, J.Y., 2000. Effect of rearing temperature and photoperiod on the larval developmental growth of Apriona germari Hope. Int. J. Indust. Entomol. 1, 137-141.
  31. Yoon, H.J., Park, H.-C., Kim, S. Y., Lee, K. Y., Shin, M., Ko, H.-J., Nam, S.-H., 2020. Re-examination of supermealworm as edible insects, 1st ed., Rural Development of Agriculture, Wanju, Republic of Korea.