DOI QR코드

DOI QR Code

Effect of 3-caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea on endothelial nitric oxide synthase activation via calcium signaling pathway

  • Lee, Gi Ho (College of Pharmacy, Chungnam National University) ;
  • Lee, Seung Yeon (College of Pharmacy, Chungnam National University) ;
  • Zheng, Chuanfeng (College of Pharmacy, Chungnam National University) ;
  • Pham, Hoa Thi (College of Pharmacy, Chungnam National University) ;
  • Kim, Chae Yeon (College of Pharmacy, Chungnam National University) ;
  • Kim, Mi Yeon (College of Pharmacy, Chungnam National University) ;
  • Han, Eun Hee (Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI)) ;
  • Hwang, Yong Pil (Fisheries Promotion Division) ;
  • Jeong, Hye Gwang (College of Pharmacy, Chungnam National University)
  • 투고 : 2021.11.25
  • 심사 : 2022.01.06
  • 발행 : 2022.07.15

초록

3-Caffeoyl-4-dicaffeoylquinic acid (CDCQ) is a natural chlorogenic acid isolated from Salicornia herbacea that protects against oxidative stress, inflammation, and cancer. Nitric oxide (NO) plays a physiologically beneficial role in the cardiovascular system, including vasodilation, protection of endothelial cell function, and anti-inflammation. However, the effect of CDCQ on NO production and eNOS phosphorylation in endothelial cells is unclear. We investigated the effect of CDCQ on eNOS phosphorylation and NO production in human endothelial cells, and the underlying signaling pathway. CDCQ significantly increased NO production and the phosphorylation of eNOS at Ser1177. Additionally, CDCQ induced phosphorylation of PKA, CaMKII, CaMKKβ, and AMPK. Interestingly, CDCQ increased the intracellular Ca2+ level, and L-type Ca2+ channel (LTCC) blockade significantly attenuated CDCQ-induced eNOS activity and NO production by inhibiting PKA, CaMKII, CaMKKβ, and AMPK phosphorylation. These results suggest that CDCQ increased eNOS phosphorylation and NO production by Ca2+-dependent phosphorylation of PKA, CaMKII, CaMKKβ, and AMPK. Our findings provide evidence that CDCQ plays a pivotal role in the activity of eNOS and NO production, which is involved in the protection of endothelial dysfunction.

키워드

과제정보

This work was supported by research fund of Chungnam National University.

참고문헌

  1. Heo KS, Berk BC, Abe J (2016) Disturbed flow-induced endothelial proatherogenic signaling via regulating post-translational modifications and epigenetic events. Antioxid Redox Signal 25:435-450. https://doi.org/10.1089/ars.2015.6556
  2. Li H, Forstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244-254. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3%3c244::AID-PATH575%3e3.0.CO;2-8
  3. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829-837, 837a-837d. https://doi.org/10.1093/eurheartj/ehr304
  4. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597-601. https://doi.org/10.1038/21218
  5. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601-605. https://doi.org/10.1038/21224
  6. Busse R, Mulsch A (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265:133-136. https://doi.org/10.1016/0014-5793(90)80902-u
  7. Schneider JC, El Kebir D, Chereau C, Lanone S, Huang XL, De Buys Roessingh AS, Mercier JC, Dall'Ava-Santucci J, Dinh-Xuan AT (2003) Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol 284:H2311-H2319. https://doi.org/10.1152/ajpheart.00932.2001
  8. Lee GH, Kim CY, Zheng C, Jin SW, Kim JY, Lee SY, Kim MY, Han EH, Hwang YP, Jeong HG (2021) Rutaecarpine increases nitric oxide synthesis via eNOS phosphorylation by TRPV1-dependent CaMKII and CaMKKbeta/AMPK signaling pathway in human endothelial cells. Int J Mol Sci 22:9407. https://doi.org/10.3390/ijms22179407
  9. Jin SW, Pham HT, Choi JH, Lee GH, Han EH, Cho YH, Chung YC, Kim YH, Jeong HG (2019) Impressic acid, a lupane-type triterpenoid from Acanthopanax koreanum, attenuates TNF-alpha-induced endothelial dysfunction via activation of eNOS/NO pathway. Int J Mol Sci 20:5772. https://doi.org/10.3390/ijms20225772
  10. Garcia-Morales V, Cuinas A, Elies J, Campos-Toimil M (2014) PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production. Vascul Pharmacol 60:95-101. https://doi.org/10.1016/j.vph.2014.01.004
  11. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922-15926. https://doi.org/10.1074/jbc.M212475200
  12. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947. https://doi.org/10.1101/cshperspect.a003947
  13. Jin SW, Choi CY, Hwang YP, Kim HG, Kim SJ, Chung YC, Lee KJ, Jeong TC, Jeong HG (2016) Betulinic acid increases eNOS phosphorylation and NO synthesis via the calcium-signaling pathway. J Agric Food Chem 64:785-791. https://doi.org/10.1021/acs.jafc.5b05416
  14. Mergler S, Pleyer U, Reinach P, Bednarz J, Dannowski H, Engelmann K, Hartmann C, Yousif T (2005) EGF suppresses hydrogen peroxide induced Ca2+ infux by inhibiting L-type channel activity in cultured human corneal endothelial cells. Exp Eye Res 80:285-293. https://doi.org/10.1016/j.exer.2004.09.012
  15. Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng (N Y) 27:141-177. https://doi.org/10.1007/0-387-25856-6_9
  16. Chung YC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH, Jeong HG (2005) Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch Pharm Res 28:1122-1126. https://doi.org/10.1007/BF02972972
  17. Im SA, Kim K, Lee CK (2006) Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea. Int Immunopharmacol 6:1451-1458. https://doi.org/10.1016/j.intimp.2006.04.011
  18. Ryu DS, Kim SH, Lee DS (2009) Anti-proliferative effect of polysaccharides from Salicornia herbacea on induction of G2/M arrest and apoptosis in human colon cancer cells. J Microbiol Biotechnol 19:1482-1489. https://doi.org/10.4014/jmb.0902.063
  19. Hwang YP, Yun HJ, Chun HK, Chung YC, Kim HK, Jeong MH, Yoon TR, Jeong HG (2009) Protective mechanisms of 3-cafeoyl, 4-dihydrocafeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage. Chem Biol Interact 181:366-376. https://doi.org/10.1016/j.cbi.2009.07.017
  20. Han EH, Kim JY, Kim HG, Chun HK, Chung YC, Jeong HG (2010) Inhibitory effect of 3-cafeoyl-4-dicafeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Chem Biol Interact 183:397-404. https://doi.org/10.1016/j.cbi.2009.11.015
  21. Hwang YP, Kim HK, Choi JH, Do MT, Tran TP, Chun HK, Chung YC, Jeong TC, Jeong HG (2013) 3-Cafeoyl, 4-dihydrocafeoylquinic acid from Salicornia herbacea attenuates high glucose-induced hepatic lipogenesis in human HepG2 cells through activation of the liver kinase B1 and silent information regulator T1/AMPK-dependent pathway. Mol Nutr Food Res 57:471-482. https://doi.org/10.1002/mnfr.201200529
  22. Hwang YP, Yun HJ, Choi JH, Chun HK, Chung YC, Kim SK, Kim BH, Kwon KI, Jeong TC, Lee KY, Jeong HG (2010) 3-Cafeoyl, 4-dihydrocafeoylquinic acid from Salicornia herbacea inhibits tumor cell invasion by regulating protein kinase C-delta-dependent matrix metalloproteinase-9 expression. Toxicol Lett 198:200-209. https://doi.org/10.1016/j.toxlet.2010.06.018
  23. Wang S, Sarria B, Mateos R, Goya L, Bravo-Clemente L (2019) TNF-alpha-induced oxidative stress and endothelial dysfunction in EA.hy926 cells is prevented by mate and green coffee extracts, 5-cafeoylquinic acid and its microbial metabolite, dihydrocaffeic acid. Int J Food Sci Nutr 70:267-284. https://doi.org/10.1080/09637486.2018.1505834
  24. Suzuki A, Yamamoto N, Jokura H, Yamamoto M, Fujii A, Tokimitsu I, Saito I (2006) Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J Hypertens 24:1065-1073. https://doi.org/10.1097/01.hjh.0000226196.67052.c0
  25. Pham TH, Jin SW, Lee GH, Park JS, Kim JY, Thai TN, Han EH, Jeong HG (2020) Sesamin induces endothelial nitric oxide synthase activation via transient receptor potential vanilloid type 1. J Agric Food Chem 68:3474-3484. https://doi.org/10.1021/acs.jafc.9b07909
  26. Bito V, Heinzel FR, Biesmans L, Antoons G, Sipido KR (2008) Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovasc Res 77:315-324. https://doi.org/10.1093/cvr/cvm063
  27. Zeiher AM, Drexler H, Wollschlager H, Just H (1991) Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 84:1984-1992. https://doi.org/10.1161/01.cir.84.5.1984
  28. Scioli MG, Storti G, D'Amico F, Rodriguez Guzman R, Centofanti F, Doldo E, Cespedes Miranda EM, Orlandi A (2020) Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: potential diagnostic biomarkers and therapeutic targets. J Clin Med 9:1995. https://doi.org/10.3390/jcm9061995
  29. Amato A, Caldara GF, Nuzzo D, Baldassano S, Picone P, Rizzo M, Mule F, Di Carlo M (2017) NAFLD and atherosclerosis are prevented by a natural dietary supplement containing curcumin, silymarin, guggul, chlorogenic acid and inulin in mice fed a high-fat diet. Nutrients 9:492. https://doi.org/10.3390/nu9050492
  30. Wu KK (2002) Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci 962:122-130. https://doi.org/10.1111/j.1749-6632.2002.tb04062.x
  31. Koo BH, Hwang HM, Yi BG, Lim HK, Jeon BH, Hoe KL, Kwon YG, Won MH, Kim YM, Berkowitz DE, Ryoo S (2018) Arginase II contributes to the Ca(2+)/CaMKII/eNOS axis by regulating Ca(2+) concentration between the cytosol and mitochondria in a p32-dependent manner. J Am Heart Assoc 7:e009579. https://doi.org/10.1161/JAHA.118.009579
  32. Yoshitomi H, Zhou J, Nishigaki T, Li W, Liu T, Wu L, Gao M (2020) Morinda citrifolia (Noni) fruit juice promotes vascular endothelium function in hypertension via glucagon-like peptide-1 receptor-CaMKKbeta-AMPK-eNOS pathway. Phytother Res 34:2341-2350. https://doi.org/10.1002/ptr.6685
  33. Ying L, Li N, He Z, Zeng X, Nan Y, Chen J, Miao P, Ying Y, Lin W, Zhao X, Lu L, Chen M, Cen W, Guo T, Li X, Huang Z, Wang Y (2019) Fibroblast growth factor 21 Ameliorates diabetes-induced endothelial dysfunction in mouse aorta via activation of the CaMKK2/AMPKalpha signaling pathway. Cell Death Dis 10:665. https://doi.org/10.1038/s41419-019-1893-6
  34. Walther S, Pluteanu F, Renz S, Nikonova Y, Maxwell JT, Yang LZ, Schmidt K, Edwards JN, Wakula P, Groschner K, Maier LS, Spiess J, Blatter LA, Pieske B, Kockskamper J (2014) Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol 307:H689-H700. https://doi.org/10.1152/ajpheart.00694.2013
  35. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415-1459. https://doi.org/10.1152/physrev.2001.81.4.1415
  36. Parker T, Wang KW, Manning D, Dart C (2019) Soluble adenylyl cyclase links Ca(2+) entry to Ca(2+)/cAMP-response element binding protein (CREB) activation in vascular smooth muscle. Sci Rep 9:7317. https://doi.org/10.1038/s41598-019-43821-3