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Abstract. In this paper, starting with the geometric constants that can characterize

Hilbert spaces, combined with the isosceles orthogonality of Banach spaces, the orthogo-

nal geometric constant ΩX(α) is defined, and some theorems on the geometric properties

of Banach spaces are derived. Firstly, this paper reviews the research progress of orthogo-

nal geometric constants in recent years. Then, this paper explores the basic properties of

the new geometric constants and their relationship with conventional geometric constants,

and deduces the identity of ΩX(α) and γX(α). Finally, according to the identities, the

relationship between these the new orthogonal geometric constant and the geometric prop-

erties of Banach Spaces (such as uniformly non-squareness, smoothness, convexity, normal

structure, etc.) is studied, and some necessary and sufficient conditions are obtained.

1. Introduction

As we all know, the geometric theory of Banach spaces has been fully devel-
oped and synthesizes the properties of concrete spaces such as the classical sequence
spaces c0, lp(1 ≤ p < ∞) and the function space C [a, b]. After fifty years of explo-
ration and research, scholars found that some abstract properties of Banach spaces
can be quantitatively described by some special constants. At present, there are
many papers on geometric constants, but how to use geometric constants to clas-
sify Banach spaces is an important problem. For example, Clarkson introduced the
module of convexity to be used to characterize uniformly convex spaces [17], and the
von-Neumann constant to be used to characterize uniformly non-square spaces and
inner product spaces [6]. After, in order to study the normal structure of spaces,
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James introduced the James constant [13]. After the appearance of these constants,
many scholars paid attention to them, and obtained many wonderful properties. Al-
though the study of geometric constants has gone through more than half a century,
many new geometric constants constantly appear in our field of vision. Since the
1960s, not only the geometric theory of Banach spaces has been fully developed, but
also its research methods have been applied to matrix theory, differential equations
and so on.

As the geometric properties of general Hilbert spaces, orthogonal relation has
strong geometric intuition. For the general Banach spaces, due to the lack of
the definition of inner product, scholars introduced a variety of orthogonality
equivalent to the traditional orthogonal relationship in Hilbert spaces. For ex-
ample, in the real normed space (X, ∥ · ∥), James [14] defined isosceles orthog-
onality: x ⊥I y if and only if ∥x + y∥ = ∥x − y∥. In 1935, Birkhoff [2] defined
Birkhoff orthogonality: x ⊥B y if and only if ∥x∥ ≤ ∥x + ty∥. For another exam-
ple, Roberts [21] defined Robert orthogonality which contains both isosceles and
Birkhoff orthogonality: x ⊥R y if and only if ∥x + λy∥ = ∥x − λy∥. In addition to
the above three orthogonalities, Balestro [4] introduced Pythagorean orthogonality:
x ⊥P y if and only if ∥x + y∥2 = ∥x∥2 + ∥y∥2. In Hilbert space, these orthogonali-
ties can be simplified to the orthogonal relation in the traditional sense. However,
these orthogonalities are different in general Banach spaces. In order to study the
differences between these orthogonalities, a large number of orthogonal geometric
constants have been defined and studied [2, 15, 18], including

BR(X) = sup
α>0

{
∥x+ αy∥ − ∥x− αy∥

α
: x, y ∈ SX , x ⊥B y

}
and

BI(X) = sup

{
∥x+ y∥ − ∥x− y∥

∥x∥
: x, y ∈ SX , x, y ̸= 0, x ⊥B y

}
.

The introduction of these orthogonal geometric constants not only enriches the
theory of Banach spaces, but also provides important tools for the study of quasi
Banach spaces.

Although there are a large number of studies on the differences between these or-
thogonalities, there are few studies involving Pythagorean orthogonality, especially
the differences between isosceles and Pythagorean orthogonality. Therefore, this
paper defines a new orthogonal geometric constant with the help of the properties
of isosceles orthogonality, as follows:

ΩX(α) = sup

{
∥αx+ y∥2 + ∥x+ αy∥2

∥x+ y∥2
: x ⊥I y, (x, y) ̸= (0, 0)

}
, where 0 ≤ α < 1.

Then, the inequalities between the new constant and the James constant, von-
Nuemann constant and the module of convexity are discussed. Finally, the judgment
theorems of the geometric properties of Banach spaces are obtained, including uni-
form non-squareness, uniform convexity, uniform smoothness, strict convexity and
uniform normal structure.
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2. Notations and Preliminaries

In this section, let’s recall some concepts of geometric properties of Banach
spaces and significant functions.

Definition 2.1. ([5]) Let Xbe Banach space, then the module of convexity is
defined as

δX(ε) = inf

{
1− ∥x+ y∥

2
: x, y ∈ SX , ∥x− y∥ = ε

}
, where ε ∈ [0, 2] .

Definition 2.2. ([13]) Let X be Banach space, then the James constant is defined
as

J(X) = sup{min{∥x+ y∥, ∥x− y∥} : x, y ∈ SX}.

Definition 2.3. ([6]) Let X be Banach space, then the von-Neumann constant is
defined as

CNJ(X) = sup

{
∥x+ y∥2 + ∥x− y∥2

2∥x∥2 + 2∥y∥2
: x, y ∈ X, (x, y) ̸= (0, 0)

}
.

And the modified von-Neumann constant is defined as

C ′
NJ(X) = sup

{
∥x+ y∥2 + ∥x− y∥2

4
: x, y ∈ SX

}
.

Some famous conclusions about CNJ(X) are listed below:
(i) CNJ (X) ≤ J(X) [23];
(ii) 1 ≤ CNJ (X) ≤ 2 [16];
(iii) X is a Hilbert space if and only if CNJ(X) = 1 [16];
(iv) X is uniformly non-square if and only if CNJ (X) < 2 [22].

Definition 2.4. ([25]) Let X be Banach space, then the function γX(t) : [0, 1] →
[0, 4] is defined as

γX(t) = sup

{
∥x+ ty∥2 + ∥x− ty∥2

2
: x, y ∈ SX

}
.

Definition 2.5. ([8]) Let X be Banach space, then the module of smoothness ρX(t)
is defined as

ρX(t) = sup

{
∥x+ ty∥+ ∥x− ty∥

2
− 1 : x, y ∈ SX ,

}
, where t ∈ [0,+∞) .

In addition, in order to better characterize the properties of Banach spaces,
Zbganu [7] generalized the constant CNJ (X) in 2001 and introduced the following
constant:
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Definition 2.6. ([7]) Let X be Banach space, then the Zbganu constant is defined
as

CZ(X) = sup

{
∥x+ y∥∥x− y∥
∥x∥2 + ∥y∥2

: x, y ∈ X, (x, y) ̸= (0, 0)

}
.

Alonso and Martin [24] proved the existence of Banach space X such that
CZ(X) < CNJ(X). Now, we review some definitions of the properties of Banach
spaces.

Definition 2.7. ([13]) The Banach space X is called uniformly non-square if there

exists δ ∈ (0, 1) such that for any x, y ∈ SX , either ∥x+y∥
2 ≤ 1− δ or ∥x−y∥

2 ≤ 1− δ.

Definition 2.8. ([5]) The Banach spac X is called strictly convex if ∥x∥ = ∥y∥ =
1 and x ̸= y imply ∥x+ y∥ < 2.

Definition 2.9. ([5]) The Banach spac X is said to be uniformly convex whenever
given 0 < ε ≤ 2, there exists δ > 0 such that if x, y ∈ SX and ∥x − y∥ ≥ ε, then∥∥x+y

2

∥∥ ≤ 1− δ.

Definition 2.10. ([1]) Let X be Banach space, then diamA = sup{∥x− y∥ : x, y ∈
A} is called the diameter of A and r(A) = inf{sup{∥x − y∥} : y ∈ A} is called the
Chebyshev radius of A. X is said to have normal structure provided r(A) < diamA
for every bounded closed convex subset A of X with diamA > 0. X is said to have

uniform normal structure if inf
{

diamA
r(A)

}
> 1 with diamA > 0.

Next, list some conclusions about the geometric properties of Banach spaces as
follows:

Lemma 2.11. Let X be Banach space, then
(i) If δX(1) > 0, then X has normal structure [10].
(ii) X is uniformly non-square if and only if J(X) < 2 [11].

(iii) If J(X) < 1+
√
5

2 , then X has uniform normal structure [9].

(iv) X is uniformly smooth if and only if limt→0+
γX(t)−1

t = 0 [25].
(v) If 2γX(t) < 1 + (1 + t)2 for some t ∈ (0, 1], then X has uniform normal

structure [25].
(vi) X is strictly convex if and only if δX(2) = 1 [25].
(vii) X is uniformly convex if and only if sup{ε ∈ [0, 2] : δX(ε) = 0} = 0 [10].

As we all know, for general normed spaces, the parallelogram rule can describe
inner product spaces. In [3], this rule is extended to the following form:

Lemma 2.12. ([3]) Let X be a real normed linear space, then (X, ∥ · ∥) is an inner
product space if and only if for any x, y ∈ SX , there exist α, β ̸= 0 such that

∥αx+ βy∥2 + ∥αx− βy∥2 ∼ 2(α2 + β2),

where ∼ stands for =,≤ or ≥.
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In the middle of last century, in order to extend the orthogonal relation of inner
product spaces to any Banach spaces, many scholars introduced new orthogonality.
For example, as the orthogonality of general Banach spaces, James defined isosceles
orthogonality in 1945:

Definition 2.13. ([14]) Let X be Banach space, x, y ∈ X, if ∥x + y∥ = ∥x − y∥,
then x is called to be isosceles orthogonal to y, denoted as x ⊥I y.

As a special case of isosceles orthogonality, Roberts also introduced Roberts
orthogonality:

Definition 2.14. ([21]) Let X be Banach space, x, y ∈ X, if ∥x+ λy∥ = ∥x− λy∥
for any λ ∈ R, then x is called to be Roberts orthogonal to y, denoted as x ⊥R y.

In addition to isosceles orthogonality, Birkhoff also defined Birkhoff orthogonal-
ity in 1935:

Definition 2.15. ([2]) Let X be Banach space, x, y ∈ X, if ∥x∥ ≤ ∥x+ ty∥ for any
t ∈ R, then x is called to be Birkhoff orthogonal to y, denoted as x ⊥B y.

Moreover, Balestro [4] introduced Pythagorean orthogonality, which is equiva-
lent to orthogonality in the traditional sense in the inner product space.

Definition 2.16. ([4]) Let X be Banach space, x, y ∈ X, if ∥x+y∥2 = ∥x∥2+∥y∥2,
then x is called to be Pythagorean orthogonal to y, denoted as x ⊥P y.

In recent years, based on the geometric constants describing properties of Ba-
nach spaces, scholars have defined many new geometric constants with the help of
Birkhoff orthogonality and Roberts orthogonality, and explored the properties of
Banach spaces [19, 12].

Definition 2.17. ([19]) Let X be Banach space, then the Birkhoff orthogonal
geometric constant BR(X) is defined as

BR(X) = sup
α>0

{
∥x+ αy∥ − ∥x− αy∥

α
: x, y ∈ SX , x ⊥B y

}
.

From the definition of BR(X), we can see that it can describe the difference
between Roberts and Birkhoff orthogonality. Meanwhile Birkhoff orthogonality is
homogeneous, it can be thought that BR(X) also measure the difference between
Birkhoff and isosceles orthogonalities. In [19], the author proves that BR(X) = 0
and X is Hilbert spaces, and deduces the properties of the corresponding points
when BR(X) reaches the supremum.

Recently, in order to explore the difference between Birkhoff orthogonality and
isosceles orthogonality, Ji [15] and Mizuguchi [18] have defined two geometric con-
stants, as shown below:
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Definition 2.18. ([15]) Let X be Banach space, then the isosceles orthogonal
geometric constant D(X) is defined as

D(X) = inf

{
inf
λ∈R

∥x+ λy∥ : x, y ∈ SX , x ⊥I y

}
.

Definition 2.19. ([18]) Let X be Banach space, then the isosceles orthogonal
geometric constant IB(X) is defined as

IB(X) = inf

{
infλ∈R ∥x+ λy∥

∥x∥
: x, y ∈ X,x, y ̸= 0, x ⊥I y

}
.

Based on the parallelogram law and isosceles orthogonality, Liu [20] introduced
a new geometric constant Ω(X), gave properties of this geometric constant, and
used it to characterized the inner product space.

Definition 2.20. ([20]) Let X be Banach space, then the isosceles orthogonal
geometric constant Ω(X) is defined as

Ω(X) = sup

{
∥2x+ y∥2 + ∥x+ 2y∥2

∥x+ y∥2
: x, y ∈ X, (x, y) ̸= (0, 0), x ⊥I y

}
.

In this paper, for narrative convenience, we let X be real Banach space with
dimX ≥ 2. The unit ball and the unit sphere of X are denoted by BX and SX ,
respectively.

3. The Isosceles Orthogonal Geometric Constant of Quadratic Form

As is known to all, for the general Banach spaceX, Pythagorean orthogonality
and isosceles orthogonality are not equivalent. But when X is an inner product
space, for any two non-zero vectors x, y ∈ X and x ⊥I y, it is easy to know x ⊥ y,
that is, x ⊥P y. Hence ∥x+ y∥2 = ∥x∥2 + ∥y∥2 and

∥αx+ y∥2 + ∥x+ αy∥2 = ∥x∥2 + ∥αy∥2 + ∥y∥+ 2α⟨x, y⟩+ ∥αx∥2 + ∥y∥2 + 2α⟨x, y⟩
= ∥x∥2 + α2∥y∥2 + α2∥x∥2 + ∥y∥2

= (1 + α2)(∥x∥2 + ∥y∥2),

which implie that

∥αx+ y∥2 + ∥x+ αy∥2

∥x+ y∥2
=

∥αx+ y∥2 + ∥x+ αy∥2

∥x∥2 + ∥y∥2
= 1 + α2

for any α ∈ R. Therefore, in order to explore the difference between Pythagorean
orthogonality and isosceles orthogonality, this paper defines the isosceles orthogonal
geometric constant of quadratic form, as follows:
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Definition 3.21. Let X be Banach space, then the isosceles orthogonal geometric
constant of quadratic form is defined as

ΩX(α) = sup

{
∥αx+ y∥2 + ∥x+ αy∥2

∥x+ y∥2
: x ⊥I y, (x, y) ̸= (0, 0)

}
, where 0 ≤ α < 1.

Theorem 3.22. Let X ba Banach space, then 1 + α2 ≤ ΩX(α) ≤ 2.

Proof. Letting x0 = 0, y0 ̸= 0, then x0 ⊥I y0 and

ΩX(α) ≥ ∥αx0 + y0∥2 + ∥x0 + αy0∥2

∥x0 + y0∥2
= 1 + α2.

Letting x, y ∈ X and x ⊥I y, then αx + y = 1+α
2 · (x + y) − 1−α

2 · (x − y) and
x+ αy = 1+α

2 · (x+ y) + 1−α
2 · (x− y), thus

∥αx+ y∥ ≤ 1 + α

2
∥x+ y∥+ 1− α

2
∥x− y∥ = ∥x+ y∥

and

∥x+ αy∥ ≤ 1 + α

2
∥x+ y∥+ 1− α

2
∥x− y∥ = ∥x+ y∥,

that is, ΩX(α) ≤ 2.

Example 3.23. Let l1 be the linear space of all sequences in R such that∑∞
i=1 |xi| < ∞ with the norm defined by

∥x∥1 =
∞∑
i=1

|xi|.

Choose x = (1, 1, 0, · · · ), y = (1,−1, 0, · · · ), then x ⊥I y and ∥x+y∥1 = ∥αx+y∥1 =
∥x+ αy∥1 = 2, that is, Ωl1(α) ≥ 2. Hence Ωl1(α) = 2.

Let l∞ be the linear space of all bounded sequences in R with the norm defined
by

∥x∥∞ = sup
1≤n≤∞

|xn|.

Choose x = (1, 0, · · · ), y = (0,−1, 0, · · · ), then x ⊥I y and ∥x+y∥∞ = ∥αx+y∥∞ =
∥x+ αy∥∞ = 1, that is, Ωl∞(α) ≥ 2. Hence Ωl∞(α) = 2.

Example 3.24. Let C [a, b] be the linear space of all real valued continuous func-
tions on [a, b] with the norm defined by

∥x∥ = sup
t∈[a,b]

|x(t)|.
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We choose x0 = 1
a−b (t− b), y0 = −1

a−b (t− b) + 1 ∈ SC[a,b], then x0 ⊥I y0, thus

ΩC[a,b](α) ≥
∥αx0 + y0∥2 + ∥x0 + αy0∥2

∥x0 + y0∥2

= sup
t∈[a,b]

∣∣∣∣1− α

a− b
(t− b) + α

∣∣∣∣2 + sup
t∈[a,b]

∣∣∣∣1 + α

a− b
(t− b)− α

∣∣∣∣2 = 2,

which implies that ΩC[a,b](α) = 2.

Theorem 3.25. Let X be Banach space, then

(i) ΩX(α) is convex and continuous with respect to α ∈ [0, 1).

(ii) ΩX(α) is a non-decreasing function with respect to α ∈ [0, 1).

(iii) ΩX(α)−2
1−α is a non-increasing function with respect to α ∈ [0, 1).

Proof. (i) Since ∥·∥2 is convex and ∥αx+y∥2+∥x+αy∥2 = ∥(∥αx+y∥, ∥x+αy∥)∥22,
then ΩX(α) is obviously convex and continuous.

(ii) In order to prove this theorem, we need to extend the definition interval of
the constant ΩX(α) to (−1, 1), and it is easy to know that ΩX(−α) = ΩX(−α),
α ∈ [0, 1). Setting 0 ≤ α1 < α2 < 1, then

ΩX(α1) = ΩX

(
α2 + α1

2α2
· α2 +

α2 − α1

2α2
· (−α2)

)
≤ α2 + α1

2α2
ΩX(α2) +

α2 − α1

2α2
ΩX(−α2) = ΩX(α2),

thus ΩX(α) is a non-decreasing function.

(iii) Setting 0 ≤ α1 < α2 < 1. In order to ensure the continuity of ΩX(α), its
supplementary definition is ΩX(1) = 2. Then

ΩX(α2)− 2

1− α2
=

ΩX

(
α2−α1

1−α1
· 1 +

(
1− α2−α1

1−α1

)
· α1

)
− 2

1− α2

≤
2 · α2−α1

1−α1
+
(
1− α2−α1

1−α1

)
ΩX(α1)− 2

1− α2
=

ΩX(α1)− 2

1− α1
,

thus ΩX(α)−2
1−α is a non-increasing function.

Theorem 3.26. Let X be Banach space, then the following conditions are equiva-
lent:

(i) X is Hilbert space.

(ii) ΩX(α) = 1 + α2 for any α ∈ [0, 1).

(iii) ΩX(α0) = 1 + α2
0 for some α0 ∈ [0, 1).
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Proof. Suppose (i) holds, then (ii) clearly holds by the definition of ΩX(α).

Suppose (ii) holds, then (iii) is clearly established.

Suppose (iii) holds, then x+ y ⊥I x− y for any x, y ∈ SX . Hence

∥α0(x+ y) + (x− y)∥2 + ∥(x+ y) + α0(x− y)∥2

∥(x+ y) + (x− y)∥2
≤ 1 + α2

0,

that is, ∥(α0 + 1)x+ (1− α0)y∥2 + ∥(α0 + 1)x− (1− α0)y∥2 ≤ 4(1 + α2
0). Letting

a = α0 + 1, b = 1 − α0, then a, b ̸= 0 and ∥ax + by∥2 + ∥ax − by∥2 ≤ 2(a2 + b2),
which implies that (i) holds.

4. Conclusions Related to Other Geometric Constants

In this section, we will study some inequalities for ΩX(α) and some geometric
constnats, including the James constant J(X), the von-Neumann constant CNJ (X),
the module of convexity δX(ε) and so on. Moreover, these inequalities will help us
to discuss the relations between ΩX(α) and some properties of Banach spaces in
the next section.

Theorem 4.27. Let X be Banach space, then ΩX(α) = (1+α)2

2 γX

(
1−α
1+α

)
.

Proof. Letting x, y ∈ X and x ⊥I y, we set u = x+y
2 , v = x−y

2 , then

x+ αy = (1 + α)u+ (1− α)v, αx+ y = (1 + α)u− (1− α)v,

thus ∥u∥ = ∥v∥ and

∥x+ αy∥2 + ∥αx+ y∥2

∥x+ y∥2
=

∥(1 + α)u+ (1− α)v∥2 + ∥(1 + α)u− (1− α)v∥2

4∥u∥2

=
(1 + α)2

4
·

∥∥∥u+ 1−α
1+αv

∥∥∥2 + ∥∥∥u− 1−α
1+αv

∥∥∥2
∥u∥2

.

Let x′ = u
∥u∥ , y

′ = v
∥v∥ , then x′, y′ ∈ SX and

∥∥∥u+ 1−α
1+αv

∥∥∥2 + ∥∥∥u− 1−α
1+αv

∥∥∥2
∥u∥2

=

∥∥∥∥x′ +
1− α

1 + α
y′
∥∥∥∥2 + ∥∥∥∥x′ − 1− α

1 + α
y′
∥∥∥∥2

≤ 2γX

(
1− α

1 + α

)
,

that is, ΩX(α) ≤ (1+α)2

2 γX

(
1−α
1+α

)
.
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Letting x, y ∈ SX , we set u = x+y
2 , v = x−y

2 , then u+ v, u− v ∈ SX . Since∥∥∥x+ 1−α
1+αy

∥∥∥2 + ∥∥∥x− 1−α
1+αy

∥∥∥2
2

=

∥∥∥u+ v + 1−α
1+α (u− v)

∥∥∥2 + ∥∥∥u+ v − 1−α
1+α (u− v)

∥∥∥2
2∥u+ v∥2

=
2

(1 + α)2
· ∥u+ αv∥2 + ∥αu+ v∥2

∥u+ v∥2

≤ 2

(1 + α)2
ΩX(α),

then ΩX(α) ≥ (1+α)2

2 γX

(
1−α
1+α

)
.

Example 4.28. Let lp ( 1 < p < ∞ ) be the linear space of all sequences in R such
that

∑∞
i=1 |xi|p < ∞ with the norm defined by

∥x∥p =

( ∞∑
i=1

|xi|p
) 1

p

.

Choose x0 =

(
1

2
1
p
, 1

2
1
p
, 0, · · · , 0

)
, y0 =

(
1

2
1
p
,− 1

2
1
p
, 0, · · · , 0

)
, then

γlp(t) ≥
∥x0 + ty0∥2 + ∥x0 − ty0∥2

2
=

(
(1 + t)p + (1− t)p

2

) 2
p

,

which implies that

Ωlp(α) ≥
(1 + α)2

2
·


(
1 + 1−α

1+α

)p
+
(
1− 1−α

1+α

)p
2


2
p

= 21−
2
p (1 + αp)

2
p .

In particular, if 2 ≤ p < ∞, then since γlp(t) =
(

(1+t)p+(1−t)p

2

) 2
p

[5], we can deduce

that

Ωlp(α) =
(1 + α)2

2
γX

(
1− α

1 + α

)
= 21−

2
p (1 + αp)

2
p .

Corollary 4.29. Let X be Banach space, then (1 − α)2C ′
NJ (X) ≤ ΩX(α) ≤ (1 +

α2)CNJ (X).

Proof. Since

CNJ (X) ≥
γX

(
1−α
1+α

)
1 +

(
1−α
1+α

)2 =
(1 + α)2γX

(
1−α
1+α

)
2 + 2α2

=
ΩX(α)

1 + α2
,
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then ΩX(α) ≤ (1 + α2)CNJ(X).
Note that x+ y ⊥I x− y for any x, y ∈ SX , then

ΩX(α) ≥ ∥x+ y + α(x− y)∥2 + ∥α(x+ y) + x− y∥2

∥x+ y + x− y∥2

=
∥(1 + α)x+ (1− α)y∥2 + ∥(1 + α)x− (1− α)y∥2

4

=
(1 + α)2

4
(∥x+ ky∥2 + ∥x− ky∥2),

where k = 1−α
1+α . Since

∥x+ ky∥ =

∥∥∥∥1 + k

2
(x+ y) +

1− k

2
(x− y)

∥∥∥∥ ≥
∣∣∣∣1 + k

2
∥x+ y∥ − 1− k

2
∥x− y∥

∣∣∣∣
and

∥x− ky∥ =

∥∥∥∥1− k

2
(x+ y) +

1 + k

2
(x− y)

∥∥∥∥ ≥
∣∣∣∣1− k

2
∥x+ y∥ − 1 + k

2
∥x− y∥

∣∣∣∣ ,
then we have

∥x+ ky∥2 + ∥x− ky∥2 ≥ 1 + k2

2
(∥x+ y∥2 + ∥x− y∥2)− (1− k2)∥x+ y∥∥x− y∥

≥ k2(∥x+ y∥2 + ∥x− y∥2).

Hence ΩX(α) ≥ (1−α)2

4 (∥x+y∥2+∥x−y∥2), that is, ΩX(α) ≥ (1−α)2C ′
NJ (X).

Corollary 4.30. Let X be Banach space, then

(1 + α)2

2
J2(X)−2α(1+α)J(X)+2α2 ≤ ΩX(α) ≤ 1 + α2

4
J2(X)+2αJ(X)+1+α2.

Proof. Letting x, y ∈ SX , then since ∥x+y∥ =
∥∥∥x+ 1−α

1+αy +
2α
1+αy

∥∥∥ ≤
∥∥∥x+ 1−α

1+αy
∥∥∥+

2α
1+α and ∥x− y∥ =

∥∥∥x− 1−α
1+αy −

2α
1+αy

∥∥∥ ≤
∥∥∥x− 1−α

1+αy
∥∥∥+ 2α

1+α , we have

min{∥x+ y∥, ∥x− y∥}2

≤ min

{∥∥∥∥x+
1− α

1 + α
y

∥∥∥∥+ 2α

1 + α
,

∥∥∥∥x− 1− α

1 + α
y

∥∥∥∥+ 2α

1 + α

}2

≤

(∥∥∥x+ 1−α
1+αy

∥∥∥+ 2α
1+α

)2
+
(∥∥∥x− 1−α

1+αy
∥∥∥+ 2α

1+α

)2
2

=
∥x+ 1−α

1+αy∥
2 + ∥x− 1−α

1+αy∥
2

2
+

2α

1 + α
(∥x+

1− α

1 + α
y∥+ ∥x− 1− α

1 + α
y∥) + 4α2

(1 + α)2

≤ γX

(
1− α

1 + α

)
+

4α

1 + α

√
γX

(
1− α

1 + α

)
+

4α2

(1 + α)2
,
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which shows that J(X) ≤
√
γX

(
1−α
1+α

)
+ 2α

1+α =
√

2
(1+α)2ΩX(α) + 2α

1+α . Hence

(1 + α)2

2
J2(X)− 2α(1 + α)J(X) + 2α2 ≤ ΩX(α).

In addition, since ∥x + ky∥ =
∥∥ 1+k

2 (x+ y) + 1−k
2 (x− y)

∥∥ ≤ 1+k
2 ∥x + y∥ +

1−k
2 ∥x−y∥ and ∥x−ky∥ =

∥∥ 1−k
2 (x+ y) + 1+k

2 (x− y)
∥∥ ≤ 1−k

2 ∥x+y∥+ 1+k
2 ∥x−y∥,

then

∥x+ ky∥2 + ∥x− ky∥2 ≤ 1 + k2

2
(∥x+ y∥2 + ∥x− y∥2) + (1− k2)∥x+ y∥∥x− y∥

≤ 1 + k2

2
(J2(X) + 4) + 2(1− k2)J(X),

that is, γX

(
1−α
1+α

)
≤ 1+α2

2(1+α)2 J
2(X) + 4α

(1+α)2 J(X) + 2+2α2

(1+α)2 . Hence ΩX(α) ≤
1+α2

4 J2(X) + 2αJ(X) + 1 + α2.

Corollary 4.31. Let X be Banach space, then

(1− α)2

2
(1+

ε

2
− δX(ε))2 ≤ ΩX(α) ≤ (1+α2)(1− δX(ε)+

αε

1 + α2
)2 +

(1− α2)2ε2

4 + 4α2
,

where ε ∈ (0, 2].

Proof. Since

2γX(t) ≥ ∥x+ ty∥2 + ∥x− ty∥2

≥ 1 + t2

2
(∥x+ y∥2 + ∥x− y∥2)− (1− t2)∥x+ y∥∥x− y∥

≥ t2

2
(∥x+ y∥+ ∥x− y∥)2,

then γX(t) ≥ t2(ρX(1) + 1)2, that is,

ΩX(α) =
(1 + α)2

2
γX

(
1− α

1 + α

)
≥ (1− α)2

2
(ρX(1) + 1)2.

Note that ρX(1) = sup
{

ε
2 − δX(ε) : 0 ≤ ε ≤ 2

}
[17], then

ΩX(α) ≥ (1− α)2

2

(
1 +

ε

2
− δX(ε)

)2
.

Since ∥x+ y∥ ≤ 2− 2δX(∥x− y∥) for any x, y ∈ SX , then

∥x+ ty∥2 + ∥x− ty∥2

≤ 1 + t2

2
(∥x+ y∥2 + ∥x− y∥2) + (1− t2)∥x+ y∥∥x− y∥

≤ 1 + t2

2
(4(1− δX(∥x− y∥))2 + ∥x− y∥2) + 2(1− t2)(1− δX(∥x− y∥))∥x− y∥,
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which implies that γX(t) ≤ (1+ t2)(1−δX(ε))2+(1− t2)(1−δX(ε))ε+ 1+t2

4 ε2. Thus

ΩX(α) = (1+α)2

2 γX

(
1−α
1+α

)
≤ (1 + α2)(1− δX(ε))2 + 2αε(1− δX(ε)) + 1+α2

4 ε2.

5. Conclusions Related to the Properties of Banach Spaces

In this part, with the help of the inequality of the new constant and the definition
of the geometric properties of Banach spaces, the characterization theorems of the
new constant for the properties of uniformly non-square, uniformly convex, strictly
convex and uniform normal structure of Banach spaces are derived.

Theorem 5.32. Let X be Banach space, then
(i) If X is not uniformly non-square, then ΩX(α) = 2 for any α ∈ [0, 1).

(ii) If ΩX(α0) <
(1+α0)

2

4 + 1 for some α0 ∈ [0, 1), then X has uniform normal
structure.

(iii) If ΩX(α0) <
9(1−α0)

2

8 for some α0 ∈ [0, 1), then X has normal structure.

Proof. (i) Since X is not uniformly non-square, then γX

(
1−α
1+α

)
=
(
1 + 1−α

1+α

)2
=

4
(1+α)2 , that is, ΩX(α) = (1+α)2

2 γX

(
1−α
1+α

)
= 2.

(ii) Since ΩX(α0) <
(1+α0)

2

4 + 1, then

2γX

(
1− α0

1 + α0

)
=

4

(1 + α0)2
ΩX(α0) < 1 +

4

(1 + α0)2
= 1 +

(
1 +

1− α0

1 + α0

)2

,

which shows that X uniform normal structure.
(iii) Since ΩX(α0) < 9(1−α0)

2

8 , then (1−α0)
2

2

(
1 + ε

2 − δX(ε)
)2

< 9(1−α0)
2

8 , that
is, δX(ε) > ε−1

2 , thus δX(1) > 0. Hence X has normal structure.

Example 5.33. Let lp − lq ( 1 ≤ q ≤ p < ∞ ) be R2 with the norm defined by

∥(x1, x2)∥ =

{
∥(x1, x2)∥p , x1x2 ≥ 0

∥(x1, x2)∥q , x1x2 < 0
.

Let l∞ − l1 be R2 with the norm defined by

∥(x1, x2)∥ =

{
∥(x1, x2)∥∞ , x1x2 ≥ 0

∥(x1, x2)∥1 , x1x2 < 0
.

We choose x0 =

(
1

2
1
p
, 1

2
1
p

)
, y0 =

(
1

2
1
q
,− 1

2
1
q

)
, then

γlp−lq (t) ≥
∥x0 + ty0∥2 + ∥x0 − ty0∥2

2
= 2−

2
p

[(
1 + t · 2

1
p−

1
q

)p
+
(
1− t · 2

1
p−

1
q

)p] 2
p

,



284 Z. Yang and Y. Li

which implies that

Ωlp−lq (α) =
(1 + α)2

2
γlp−lq

(
1− α

1 + α

)
≥ 2−1− 2

p

{[
1 + 2

1
p−

1
q +

(
1− 2

1
p−

1
q

)
α
]p

+
[
1− 2

1
p−

1
q +

(
1 + 2

1
p−

1
q

)
α
]p} 2

p

.

In particular, since γl2−l1(t) = 1+ t+ t2 and γl∞−l1(t) =
1
2 (1+(1+ t)2)[5], then

Ωl2−l1(α) =
(1 + α)2

2
γl2−l1

(
1− α

1 + α

)
=

3 + α2

2

and

Ωl∞−l1(α) =
(1 + α)2

2
γl∞−l1

(
1− α

1 + α

)
=

(1 + α)2

4
+ 1.

Thus Ωl2−l1(α),Ωl∞−l1(α) < 2 for any α ∈ [0, 1), which implies that l2 − l1,
l∞ − l1 both are uniformly non-square.

Corollary 5.34. Let X be a finite dimensional Banach space, if ΩX(α0) = 2 for
some α0 ∈ [0, 1), then X is not uniformly non-square.

Proof. Since ΩX(α0) = 2, then there exist xn ∈ SX , yn ∈ BX such that xn ⊥I yn
and

lim
n→∞

∥xn + α0yn∥2 + ∥α0xn + yn∥2

∥xn + yn∥2
= 2.

Since X is finite dimensional, then there exist x0, y0 ∈ BX such that x0 ⊥I y0
and

lim
k→∞

∥xnk
∥ = ∥x0∥, lim

k→∞
∥ynk

∥ = ∥y0∥.

Note that ∥xn + α0yn∥ ≤ ∥xn + yn∥, ∥α0xn + yn∥ ≤ ∥xn + yn∥ and

∥xn + yn∥2 + ∥xn + yn∥2

∥xn + yn∥2
≤ 2,

then ∥x0 + α0y0∥ = ∥x0 + y0∥ and ∥α0x0 + y0∥ = ∥x0 + y0∥.
Since ∥x0 + α0y0∥ ≤ (1 − α0)∥x0∥ + α0∥x0 + y0∥, then ∥x0 + y0∥ ≤ ∥x0∥. In

addition, we also can prove ∥x0 + y0∥ ≤ ∥y0∥, then

max{∥x0 + y0∥, ∥x0 − y0∥} = ∥x0 + y0∥ ≤ min{∥x0∥, ∥y0∥} ≤ 1 < 1 + δ

for any δ ∈ (0, 1), which implies that X is not uniformly non-square.

Corollary 5.35. Let X be Banach space and ΩX(0) > 1, then X is not uniformly
convex. In particular, if ΩX(α) > 1 + α2 for any α ∈ [0, 1), then X is not strictly
convex.
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Proof. If ΩX(0) > 1, then there exists ε0 ∈ (0, 2] such that ΩX(0) ≥ 1 +
ε20
4 .

Since ΩX(α) ≤ (1 + α2)
(
1− δX(ε) + αε

1+α2

)2
+ (1−α2)2ε2

4+4α2 , then

1 +
ε20
4

≤ (1− δX(ε0))
2 +

ε20
4
,

that is, δX(ε0) = 0. Thus sup{ε ∈ [0, 2] : δX(ε) = 0} ≥ ε0 > 0, that is, X is not
uniformly convex.

In particular, if ΩX(α) > 1 + α2, we assume that X is strictly convex, then
δX(2) = 1. Hence

1 + α2 < (1 + α2)

(
1− 1 +

2α

1 + α2

)2

+
(1− α2)2

1 + α2
= 1 + α2,

this is contraditory, then X is not strictly convex.

Theorem 5.36. Let X be Banach space, then X is uniformly smooth if and only
if

lim
α→1−

1 + α− ΩX(α)

1− α2
=

1

2
.

Proof. Letting t = 1−α
1+α , then α = 1−t

1+t and α → 1− ⇐⇒ t → 0+. Thus we can get

1 + α− ΩX(α)

1− α2
=

1 + α− (1+α)2

2 γX

(
1−α
1+α

)
1− α2

=
1 + 1−t

1+t −
2

(1+t)2 γX(t)

1−
(

1−t
1+t

)2 =
1 + t− γX(t)

2t
.

Therefore limt→0+
1+t−γX(t)

2t = 1
2 if and only if limt→0+

1−γX(t)
t = 0. That is,

lim
t→0+

1 + t− γX(t)

2t
=

1

2

if and only if X is uniformly smooth.
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