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ABSTRACT. In the present paper, a subclass of analytic and bi-univalent functions is
defined using a symmetric g—derivative operator by means of Gegenbauer polynomials.
Coeflicients bounds for functions belonging to this subclass are obtained. Furthermore,
the Fekete-Szego problem for this subclass is solved. A number of known or new results
are shown to follow upon specializing the parameters involved in our main results.

1. Definitions and Preliminaries

Let A denote the class of all analytic functions f defined in the open unit disk
U={£eC:|f < 1} and normalized by the conditions f(0) = 0 and f/(0) = 1.
Thus each f € A has a Taylor-Maclaurin series expansion of the form
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(1.1) O =6+ anf", (€.
n=2

Further, let § denote the class of all functions f € A which are univalent in U.

Let the functions f and g be analytic in U. We say that the function f is
subordinate to g, written as f < g, if there exists a Schwarz function w, which is
analytic in U with

w(0) =0 and |w(§)| <1 (€el)

such that

If the function g is univalent in U, then the following equivalence holds

f(€) < g(&) if and only if  f(0) = g(0)

and
f(U) C g(U).

It is well known that every function f € § has an inverse f~!, defined by

U@ =¢ (€€

and 1
) =w  (jw| <ro(f); ro(f) = 7
where
(1.2) fHw) = w — agw® 4 (263 — az)w® — (5a3 — bagaz + ag)w* 4 -+ .

A function is said to be bi-univalent in U if both f(¢) and f~!(¢) are univalent in
U.

Let 3 denote the class of bi-univalent functions in U given by (1.1). Example
of functions in the class ¥ are

¢ 1
= log——, log/—=.
e leey—p ey

However, the familiar Koebe function is not a member of ¥. Other common
examples of functions in U such as

2
26-¢ and 5
2 1-¢
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are also not members of X.

Lewin [19] investigated the bi-univalent function class ¥ and showed that |ag| <
1.51. Subsequently, Brannan and Clunie [9] conjectured that |az| < v/2. Netanyahu
[22], on the other hand, showed that max las| = 4/3.

The coefficient estimate problem for each of the Taylor—-Maclaurin coefficients
|an| (n > 3;n € N) is presumably still an open problem.

Similar to the familiar subclasses 8*(¢) and X(c) of starlike and convex function
of order ¢(0 < ¢ < 1), respectively, Brannan and Taha [10] (see also [29]) introduced
certain subclasses of the bi-univalent function class ¥, 8% (<) and Xx(s) of bi-starlike
functions and of bi-convex functions of order ¢(0 < ¢ < 1), respectively. For each of
the function classes 8%(s) and Kx(s), they found non-sharp estimates on the first
two Taylor-Maclaurin coefficients |ag| and |ag| . For some intriguing examples of
functions and characterization of the class X, see [1, 13, 21, 27].

Orthogonal polynomials have been studied extensively as early as they were
discovered by Legendre in 1784 [18]. In mathematical treatment of model problems,
orthogonal polynomials arise often to find solutions of ordinary differential equations
under certain conditions imposed by the model.

The importance of the orthogonal polynomials for the contemporary mathemat-
ics, as well as for wide range of their applications in the physics and engineering, is
beyond any doubt. It is well-known that these polynomials play an essential role in
problems of the approximation theory. They occur in the theory of differential and
integral equations as well as in the mathematical statistics. Their applications in
the quantum mechanics, scattering theory, automatic control, signal analysis and
axially symmetric potential theory are also known [7, 11].

A special case of orthogonal polynomials are Gegenbauer polynomials. They
are representatively related with typically real functions Tg as discovered in [17],
where the integral representation of typically real functions and generating function
of Gegenbauer polynomials are using common algebraic expressions. Undoubtedly,
this led to several useful inequalities appear from Gegenbauer polynomials realm.

Typically real functions play an important role in the geometric function the-
ory because of the relation Tr = ¢0Sg and its role of estimating coefficient bounds,
where Sk denotes the class of univalent functions in the unit disk with real coeffi-
cients, and coSg denotes the closed convex hull of Sg.

Very recently, Amourah et al. [4] considered the Gegenbauer polynomials
H,(z,£), which are given by
1

1.3 Ho(2,8) = ———=,
(1.3 R )

where z € [—1,1] and £ € U. For fixed z the function H,, is analytic in U, so it can
be expanded in a Taylor series as
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(1.4) Ho(z,6) =) CR(a)",
n=0

where C2(x) is Gegenbauer polynomial of degree n.

Obviously, H, generates nothing when a = 0. Therefore, the generating func-
tion of the Gegenbauer polynomial is set to be

(1.5) Hy(x,6) =1—log (1— 226+ €%) = C(x)¢"
n=0

for a = 0. Moreover, it is worth to mention that a normalization of « to be greater
than —1/2 is desirable [11, 25]. Gegenbauer polynomials can also be defined by the
following recurrence relations

(1.6) C’,‘f(x):lpx(n—i-oz—l) > (@) — (n+20—2)Co_ ()],

n n—1 n—1
with the initial values
1.7 CYz) =1, C%*(z) = 2azx and C$(z) = 2o (1 + o) 22 — a.
(1.7) 0(z) =1, C¥(z) 5 () ( )

Special cases of Gegenbauer polynomials C%(z) is Chebyshev Polynomials, when
a=1,and if « = %, we get the Legendre Polynomials.

The theory of g-calculus operators are used in describing and solving various
problems in applied science such as ordinary fractional calculus, optimal control, g-
difference and g-integral equations, as well as geometric function theory of complex
analysis. The application of g-calculus was initiated by Jackson [15]. Recently,
many researchers studied g-calculus such as Srivastava et al. [28], Muhammad and
Darus [20], Kanas and Raducanu [16], Aldweby and Darus [2] (see also, [24, 26, 28])
and also the reference cited therein.

For the convenience, we provide some basic definitions and concept details of
g—calculus which are used in this paper. We shall follow the notation and termi-
nology in [14].

Definition 1.1. ([15]) For 0 < ¢ < 1 the Jackson’s g-derivative of a function f € A
is, by definition, given as follows

(&) — f(q€)
(18) DO =4 (—ge I 70
£(0) for £=0,

From (1.8), we have

(1.9) Dy f(§) =1+ Z[n]qanghl
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where

(1.10) [n],==—= neN={1,2,.},

is sometimes called the basic number n. If ¢ — 1—, [n], — n.
For a function h(£) = £", we obtain

Dyh(€) = Dy = L= L en 1 = ) en 7,

and
lim Dgh(¢) = lm ([n]€" ") =ng" " = (&),

q—1— q—1—

where h’ is the ordinary derivative.

Definition 1.2. ([8]) The symmetric g—derivative Iﬁ)q f of a function f given by

(1.1) is defined as follows:

(1.11) (Bof) (&) =

f@®)—f(a "¢
(g—q—1)¢ §#0 .
£(0) £=0

From (1.11), we deduce that ﬁ)qﬁn = [fnv]qfnfl, and a power series of ﬁ)qf is

(ﬁ)qf> =1+ i [An/]qané“”*l,

when f has the form (1.1) and the symbol [n], denotes the number

—~ q"—q"
[n], = ——.
q q_q—l

Clearly, we have the following relations

Dy (£(6) + 9(8)) = (Baf ) (&) + (Dag) (©),

9(a€) (Baf ) (©) + £ (a7%€) (Dag) (€),
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and

(Baf) (&) = Duf(a8).
From (1.2) and (1.11), we also deduce that

= 9(qw) — g(g”'w)
(Dqg) (w) = (g—g"w
(112) = 1 — mqagw —|— E’)jq (2&% — ag) u)2 — mq (5&% — —50,20,3 —|— CL4) U)3 + e,

Recently, many researchers have been exploring bi-univalent functions associated
with orthogonal polynomials, few to mention (see,[31], [30]). For Gegenbauer poly-
nomial, as far as we know, there is little work associated with bi-univalent functions
in the literatures. Inspired by the works of Amourah et al. [4], we introduce the
following new subclasses of bi-univalent functions, as follows:

Definition 1.3. Let « is a nonzero real constant. A function f € ¥ given by (1.1)
is said to be in the class BL(z, «) if the following subordinations are satisfied:

(1.13) (Baf(©)) < Ha(w,€)
and
(1.14) (ﬁqg(w)) < Hy(z,w),

where z € (3,1], the function g(w) = f~*(w) is defined by (1.2) and H, is the
generating function of the Gegenbauer polynomial given by (1.3).

We note that limg,1— BL(z, ) = By (z,a),where the class By (z, ) defined
as follows:

Definition 1.4. Let « is a nonzero real constant. A function f € ¥ given by (1.1)
is said to be in the class Bx(z, «) if the following subordinations are satisfied:

(1.15) f(€) = Ha(z, )

and
g9'(w) < Ho(z,w)

where @ € (3,1], the function g(w) = f~!(w) is defined by (1.2) and H, is the
generating function of the Gegenbauer polynomial given by (1.3).
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Remark 1.5. We note that the subclasses B% (, 1) = H%(z) and By (z, 1) = H(x),
were introduced and studied by Altinkaya and Yalgin [3].

The following result will be required for proving our results.

Lemma 1.6. ([23]) Let P be the class of Caratheodory function with positive
real part consisting of all analytic functions p : U — C satisfying p(0) = 1 and
Re(p(£)) > 0.If the function p € P is defined by

p(€) =1+ p1€+pa&® +pa&® + -+,

then
(1.16) lpn| <2, neN.

In this paper, we use the Gegenbauer polynomial expansions to provide esti-
mates for the initial coefficients of the subclass of bi-univalent functions B% (z, o)
defined by symmetric g-derivative operator. We also solve Fekete-Szegd problem
for functions in this class.

Unless otherwise mentioned, we assume in the reminder of this paper that,
0<g<l,ze (%, 1] and « is a nonzero real constant.
2. Coefficient Bounds of the Class %%(z,a)

This section is devoted to find initial coefficient bounds of the class %%(m, «) of
bi—univalent functions.

Theorem 2.1. Let f € ¥ given by (1.1) belongs to the class %%(m,a). Then
2|o|z/2|o|x
e o]z y/2lal

\/‘ (4f?7]qa —2aP(1+ a)) s+ 20lr 1 ol ,

and
2

40’z
——9 —
q

2]

las| <

Proof. Let f € %%(:1:, «). From Definition 1.3, for some analytic functions ¢, v such
that ¢(0) = v(0) = 0 and [ (§)] < 1, |[v(w)| < 1 for all £, w € U, then we can write

(2.1) (Baf) (&) = Halw, w(€))

(2:2) (Bag) (w) = Ha(e,o(w)),
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Next, define the functions p,q € P by

p(§) = 11—7:/628 =l+al+et+- -
and )
q(w) = %ZEZ; =1+dw+dow* +---.
In the following, one can derive
_p-1_ 1 1 Loy,
(2.3) Y€)= NGETI 5015 + B (Cz - §Cl> &+
and
_qw) -1 1 ot s .

From the equalities (2.1), (2.2), (2.3) and (2.4), we obtain that

23) (Buf) (© =1+ 5CE@ears + | 105 @)k + 50000 (- 32 )] €+

and
(2.6) (ﬁqg) (w) = 1+%C?(m)d1w+ Bcg(x)d% + %Cf‘(m) (d2 - %d%)} w? -

Thus, upon comparing the corresponding coefficients in (2.5) and (2.6), we have

(2.7) mqag = %Cf‘(m)cl,

(2.8) [f?j]qa3 = lC’1 (x) (02 — %C%) + ECQO[(,T)C%,
(2.9) ~[2],a2 = 5C (2)dy,

and

(2.10) f?,v]q (243 — a3) = %Cf‘(a:) (d2 - %d%) + iOg(x)d%.

It follows from (2.7) and (2.9) that

(211) CcC1 = —dl
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and
(2.12) 2[2] a2 = i [Cf(2)]? (i +df).

If we add (2.8) and (2.10), we get

3= 208 (o2 + ) + 1 (C5(a) — G @) (6 + ).

Substituting the value of (¢} + d3) from (2.12) in the right hand side of (2.13),
we deduce that

= 5208 (x) — CF ()
(2.14) 2[BL 2], Crar

Using (2.6), (1.16) and (2.14), we find that
0] < 2o /2 ||

h —~ —~2 —~2 |

\/} (4[3]qa —2af2],(1+ a)) 2% +2a2] z + af2],

(2.13) 2(3]

1
a3 = 5C7(x) (c2 + da) .

Moreover, if we subtract (2.10) from (2.8), we obtain
(215) 48], (s — ) = S0P @) (e2 — o) + 1 (C5 () - CF @) (¢ — ).
Then, in view of (1.7) and (2.12), equation (2.15) becomes

w = T (2 ) @) (g
8[2] 413l

q

Thus applying (1.7) and (1.16), we have

4a22%  2|alz
lag| < —— + ——.

2 Bl

3. Fekete—Szego6 Problem for the Function Class %%(x, @)

Fekete-Szeg6 inequality is one of the famous problem related to coefficients of
univalent analytic functions. It was first given by [12], who stated that, if f € X,
then

lag — na2| <1+ 221/ 0=1),

This bound is sharp when 7 is real.
In this section, we aim to provide Fekete-Szegd inequalities for functions in the
class BL(z, a). These inequalities are given in the following theorem.
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Theorem 3.1. Let f € ¥ given by (1.1) belongs to the class %%(x,a}. Then

2
az —naz| <
‘ g 2‘ ~ ~2 2 ~2 ~2
2lale 1] < (4[3]qa72a[2]q(1+a))x +20(2], e+af2],
[féjq ’ n - 4a2z2®q
8laf®a® 1| 4['73] a72am2(1+a) 12+2am2z+am2
‘(4[~53]qa72am§(1+a))z2+2a@21+ar2]2|7 |7] — 1| > ( u q4a2cv2)[A§]q 4 4 5
where n € R.

Proof. From (2.14) and (2.15)
Co@) (2 + do)
[iqm?@m2—<cgw>—cw@»ﬂiﬂ

03—77052(1—77)
|

C
+ —==(c2 — d2)

h(n) + ;
4[3]

q

where

()2 (1 —
M) — Cp @) (1) ”T

4@M@mﬁ4@m—wmmg

Then, in view of (1.7) and (1.16), we conclude that

2ale 0< |h(n)] < =,
’a3 — na%‘ S { [S]q |h( )| - 14[3]11
Slalafhm) RO = -
Which completes the proof of Theorem 3.1. O

4. Corollaries and Consequences

In this section, we apply our main results in order to deduce each of the following
new corollaries and consequences.

Corollary 4.1. Let f € ¥ given by (1.1) belongs to the class %%(m, 3). Then

zV/2x
|28 - ) o 42

las| <

)
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2

x x
lag| < — + =,
[2]q [3]‘1
and |az —na3| <
i 1] < (2B1,- § 213 ) =* +2l3a+ S I,
B, T B,
23]1—7| ~ —~2 —~2 ~2
TR eI |y — 1 > | B BR) BB
= x2[3]q )

where 7 € R.
Corollary 4.2. Let f € ¥ given by (1.1) belongs to the class Bx(x,«). Then

las| < || /22
~ V0 —2a) 22 422 + 1|

2 |a|x
|a3| S OZQ.TEQ 4 |3| ,
2lalz _ (1—2a)x?4-22+1
‘3| ; |T] 1| < ‘ 3ax?
and |az —na3| <
2|al®2®|1—n| 11> | @=20)e’ 2041
[(I—2a)z2+2z+1]’ |77 - | Z T Bazz |

where 7 € R.
Concluding Remark. By taking o = 1, one can deduce the above results for
various subclasses of ¥ studied by Altinkaya and Yalgin [3].
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