과제정보
This work was supported by UGC - CSIR, New Delhi in the form of Senior Research Fellowship vide Award Letter Number - 2061540842.
참고문헌
- B. Bhowmik and N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl., 462(2)(2018), 1087-1098. https://doi.org/10.1016/j.jmaa.2018.01.035
- B. Bhowmik and N. Das, Bohr phenomenon for locally univalent functions and logarithmic power series, Comput. Methods Funct. Theory, 19(4)(2019), 729-745. https://doi.org/10.1007/s40315-019-00291-y
- H. Bohr, A theorem concerning power series, Proc. London Math. Soc., 2(1)(1914), 1-5. https://doi.org/10.1112/plms/s2-13.1.1
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math, 9(1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
- I. R. Kayumov, S. Ponnusamy and N. Shakirov. Bohr radius for locally univalent harmonic mappings, Math. Nachr., 291(11-12)(2018), 1757-1768. https://doi.org/10.1002/mana.201700068
- M. S. Liu, S. Ponnusamy and J. Wang, Bohr's phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings, Revista de la Real Academia de Ciencias Exactas, F'isicas y Naturales. Serie A. Matem'aticas, 114(3)(2020), 1-15.
- Z. H. Liu and S. Ponnusamy, Bohr radius for subordination and K-quasiconformal harmonic mappings, Bull. Malays. Math. Sci. Soc., 42(5)(2019), 2151-2168. https://doi.org/10.1007/s40840-019-00795-9
- Y. A. Muhanna, Bohr's phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ., 55(11)(2010), 1071-1078. https://doi.org/10.1080/17476931003628190
- Y. A. Muhanna, R. M. Ali and Saminathan Ponnusamy, On the Bohr inequality, Progress in Approximation Theory and Applicable Complex Analysis, Springer, (2017), 269-300.
- L. E. Schaubroeck, Subordination of planar harmonic functions, Complex Var. Elliptic Equ., 41(2)(2000), 163-178.
- T. Sheil-Small, Constants for planar harmonic mappings, J. Lond. Math. Soc., 2(2)(1990), 237-248. https://doi.org/10.1112/jlms/s2-2.2.237