DOI QR코드

DOI QR Code

Long Short-Term Memory를 이용한 부산항 조위 예측

Tidal Level Prediction of Busan Port using Long Short-Term Memory

  • 김해림 (부경대학교 해양산업공학(협)) ;
  • 전용호 ((주)씨엔에스솔루션) ;
  • 박재형 ((주)씨엔에스솔루션) ;
  • 윤한삼 (부경대학교 교양교육원)
  • 투고 : 2022.04.25
  • 심사 : 2022.06.27
  • 발행 : 2022.06.30

초록

본 연구는 조위 관측자료를 이용하여 부산항에서의 장기 조위 자료를 생성하는 Long Short-Term Memory (LSTM)으로 구현된 순환신경망 모델을 개발하였다. 국립해양조사원의 부산 신항과 통영에서 관측된 조위 자료를 모델 입력 자료로 사용하여 부산항의 조위를 예측하였다. 모델에 대하여 2019년 1월 한 달의 학습을 수행하였으며, 이후 2019년 2월에서 2020년 1월까지 1년에 대하여 정확도를 계산하였다. 구축된 모델은 부산 신항과 통영의 조위 시계열을 함께 입력한 경우에 상관계수 0.997 및 평균 제곱근 오차 2.69 m로 가장 성능이 높았다. 본 연구 결과를 바탕으로 딥러닝 순환신경망 모델을 이용하여 임의 항만의 장기 조위 자료 예측이 가능함을 알 수 있었다.

This study developed a Recurrent Neural Network model implemented through Long Short-Term Memory (LSTM) that generates long-term tidal level data at Busan Port using tide observation data. The tide levels in Busan Port were predicted by the Korea Hydrographic and Oceanographic Administration (KHOA) using the tide data observed at Busan New Port and Tongyeong as model input data. The model was trained for one month in January 2019, and subsequently, the accuracy was calculated for one year from February 2019 to January 2020. The constructed model showed the highest performance with a correlation coefficient of 0.997 and a root mean squared error of 2.69 cm when the tide time series of Busan New Port and Tongyeong were inputted together. The study's finding reveal that long-term tidal level data prediction of an arbitrary port is possible using the deep learning recurrent neural network model.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

참고문헌

  1. Beltrami, G. M.(2008), An ANN algorithm for automatic, real-time tsunami detection in deep-sea level measurements, Ocean Engineering, Vol. 35, pp. 572-587. https://doi.org/10.1016/j.oceaneng.2007.11.009
  2. Chang, H. K. and L. C. Lin(2006), Multi-point tidal prediction using artificial neural network with tide-generating forces, Coastal Engineering, Vol. 53, pp. 857-864. https://doi.org/10.1016/j.coastaleng.2006.05.001
  3. Deo, M. C.(2010), Artificial neural networks in coastal and ocean engineering, Indian Journal of Geo-Marine Science, Vol 39, No. 5, pp. 589-596.
  4. Greff, K., R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber(2017), LSTM: A search space odyssey, IEEE transactions on neural networks and learning systems, Vol. 28, No. 10, pp. 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924
  5. Hochreiter, S. and J. Schmidhuber(1997), Long Short-Term Memory. Neural Computation Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  6. Huang, W., C. Murray, N. Kraus, and J. Rosati(2003), Development of a regional neural network for coastal water level predictions. Ocean Engineering Vol. 30, No. 17, pp. 2275-2295. https://doi.org/10.1016/S0029-8018(03)00083-0
  7. IHO(International Hydrographic Organization)(2018), Resolution on datums and benchmarks A2.5 3/1919, Resolutions of the International Hydrographic Organization Publication M-3 (2nd Edn).
  8. Jung, S. H., H. Y. Cho, J. Y. Kim, and G. H. Lee(2018), Prediction of water level in a tidal river using a deep-learning based LSTM model, Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1207-1216. https://doi.org/10.3741/JKWRA.2018.51.12.1207
  9. Kim, H. L.(2022), A Study on Irregular Tide Prediction Including Typhoon Effect Using a Deep Learning Approach, Pukyong National University, Ms thesis, p. 82.
  10. Kim, T. Y. and H. S. Yoon(2011), Skill Assessments for Evaluation the Performance of the Hydrodynamic Model, Journal of Korean Society for Marine Environmental Engineering, Vol. 14, No. 2, pp. 107-113. https://doi.org/10.7846/JKOSMEE.2011.14.2.107
  11. Kingma, D. P. and J. Ba(2014), Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015).
  12. Liang, S. X., M. C. Li, and Z. C. Sun(2008), Prediction models for tidal water-level including strong meteorologic effects using a neural network, Ocean Engineering, Vol. 35, No. 7, pp. 666-675. https://doi.org/10.1016/j.oceaneng.2007.12.006
  13. Mandal, S., S. Rao, and D. H. Raju(2005), Ocean wave parameters estimation using back propagation neural network, Elsevier J Marine Structures, Vol. 18, pp. 301-318. https://doi.org/10.1016/j.marstruc.2005.09.002
  14. Park, J. S., K. M. Ahn, C. Y. Oh, and Y. S. Chang(2020), Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network, Journal of Korean Society of Coastal and Ocean Engineering, Vol. 32, No. 6, pp. 561-568. https://doi.org/10.9765/KSCOE.2020.32.6.561
  15. Ustoorika, K. and M. C. Deo(2008), Filling up Gaps in Wave Data with Genetic Programming, Marine Structures, Elsevier, Vol. 20, pp. 177-195. https://doi.org/10.1016/j.marstruc.2007.12.001
  16. Wang, X. H., J. C. Yin, and H. F. Wang(2020), Modular Tide Prediction Model Based on Improved Wavelet Neural Network, 2020 Chinese Control And Decision Conference (CCDC), Chinese Control And Decision Conference (CCDC), pp. 4234-4239.
  17. Yagci, O., D. E. Mercan, H. K. Cigizoglu, and M. S. Kabdasli(2005), Artificial intelligence methods in breakwater damage ratio estimation, Elsevier J Ocean Engineering, Vol. 32, pp. 2088-2106. https://doi.org/10.1016/j.oceaneng.2005.03.004
  18. Zisis, I. P. and T. Yingli(2019), Prediction of Sea Ice Motion With Convolutional Long Short-Term Memory Networks, IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 9, pp. 6865-6876. https://doi.org/10.1109/tgrs.2019.2909057