DOI QR코드

DOI QR Code

화물 중량 분포 변화에 따른 초대형 컨테이너선의 피로 손상에 대한 연구

A Study on ULCS Fatigue Damage Considering the Variation of Cargo Weight Distribution

  • 이민아 (한국해양대학교 항해학과) ;
  • 최신표 (한국해양대학교 항해학과) ;
  • 박준범 (한국해양대학교 항해융합학부)
  • Yi, Minah (Division of Navigation Science, Korea Maritime & Ocean University) ;
  • Choi, Shin-pyo (Division of Navigation Science, Korea Maritime & Ocean University) ;
  • Park, Jun-bum (Division of Navigation Science, Korea Maritime & Ocean University)
  • 투고 : 2022.05.16
  • 심사 : 2022.06.27
  • 발행 : 2022.06.30

초록

선박의 피로 손상 해석에는 운항적인 요소를 고려한 매개 변수들을 포함하고 있다. 이러한 운항적인 변수들 때문에 설계 단계에서 예측하는 피로 손상도와 실제 운항 조건을 고려한 피로 손상도간의 차이가 발생한다. 마찬가지로 피로 해석에서 적재 하중 조건을 고려할 때 실제 컨테이너선은 다양한 적재 상태가 존재하지만 설계 단계에서 대표 하중 조건을 선택하여 피로 손상도를 계산한다. 실제 하중 조건과 설계시 하중 조건을 적용하였을 때 피로 손상 계산 결과의 차이가 예상됨에도 불구하고 컨테이너선의 하중 조건에 따른 피로 손상 기여도에 관한 연구는 거의 이루어지지 않은 실정이다. 본 연구에서는 컨테이너선의 화물 중량 분포를 변화시켰을 때 피로 손상기여도를 분석하고자 하였다. 일반적으로 설계 단계에서 적용하는 하중 조건뿐만 아니라 다양한 하중 조건을 생성하고 유체동역학 계산으로 얻을 수 있는 선체 거더 하중 및 스펙트럴 피로 해석을 수행하여 얻은 피로 손상도를 확인하였다. 그 결과, 컨테이너선에서 화물 중량 분포 변화는 선체 거더 하중을 변화시켰으며 선체 거더 응력에 영향을 주어 피로 손상의 변화를 야기시키는 것을 알 수 있었다.

Fatigue damage analysis of ships includes parameters considering operational factors. Due to these operational variables, there is a difference between the fatigue damage estimated during the design stage and the actual accumulated fatigue damage. Likewise, there are various loading conditions for the real container ships, but at design stage the fatigue damage is calculated by applying the representative loading conditions. Moreover, although the difference in fatigue damages is expected when the actual and design loading conditions are applied, there are few studies on the contributions of the fatigue damage based on the loading conditions of container ships. In this paper, fatigue contributions were investigated from various cargo weight distributions. The hull girder loads calculated through seakeeping analysis and fatigue damages obtained by performing spectral fatigue analysis were identified under new loading conditions. As a result, it was found that the variation of cargo weight distribution in the container ship brought about changes in the hull girder loads and fatigue damage by affecting the hull girder stress.

키워드

참고문헌

  1. ABS(American Bureau of Shipping)(2016), Guide for spectral-based fatigue analysis for vessels.
  2. Balli, E. and T. Ward(2020), Fatigue life improvement of weathervaning ship-shaped offshore units by a smart heading control system, Ocean Engineering, Vol. 207.
  3. DNV(Det Norske Veritas)(2020), Fatigue assessment of ship structures CN-No.30.7.
  4. Guachamin-Acero, W. and J. Portilla-Yandun(2021), A study on vessel fatigue damage as a criterion for heading selection by application of 2D actual bimodal and JONSWAP wave spectra, Ocean Engineering, Vol. 226.
  5. Helo, P., H. Paukku, and T. Sairanen(2021), Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators, Maritime Economics & Logistics, Vol. 23, No. 1, pp. 28-48. https://doi.org/10.1057/s41278-018-0106-z
  6. Li, Z. Y. and J. W. Ringsberg(2012), Fatigue routing of container ships-assessment of contributions to fatigue damage from wave-induced torsion and horizontal and vertical bending, Ships and Offshore Structures, Vol. 7, No. 2, pp. 119-131. https://doi.org/10.1080/17445302.2011.559368
  7. LR(Lloyd's Register)(2009), Fatigue Design Assessment Level 3 Procedure Guidance on direct calculations.
  8. Magoga, T.(2020), Fatigue damage sensitivity analysis of a naval high speed light craft via spectral fatigue analysis, Ships and Offshore Structures, Vol. 15, No. 3, pp. 236-248. https://doi.org/10.1080/17445302.2019.1612543
  9. Mao, W. G., Z. Y. Li, V. Ogeman, and J. W. Ringsberg (2015), A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions, Marine Structures, Vol. 41, pp. 244-266. https://doi.org/10.1016/j.marstruc.2015.01.001
  10. Mao, W. G., J. W. Ringsberg, I. Rychlik, and G. Storhaug (2010), Development of a Fatigue Model Useful in Ship Routing Design, Journal of Ship Research, Vol. 54, No. 4, pp. 281-293. https://doi.org/10.5957/jsr.2010.54.4.281
  11. Thompson, I.(2016), Validation of naval vessel spectral fatigue analysis using full-scale measurements, Marine Structures, Vol. 49, pp. 256-268. https://doi.org/10.1016/j.marstruc.2016.05.006
  12. Wirsching, P. H. and M. C. Light(1980), Fatigue under wide band random stresses, Journal of the Structural Division ASCE (Americal Society of Civil Engineers), Vol. 106, No. 7, pp. 1593-1607.
  13. Yosri, A., H. Leheta, S. Saad-Eldeen, and A. Zayed(2022), Accumulated fatigue damage assessment of side structural details in a double hull tanker based on spectral fatigue analysis approach, Ocean Engineering, Vol. 251.