DOI QR코드

DOI QR Code

Prevalence and Cytotoxic Effects of Some Colibactin and cnf Genes among Escherichia coli Isolated from Urinary Tract Infections

  • Alhadidi, Hiba A.S. (Al-Esraa University College, Department of Dentistry) ;
  • Al-Qaysi, Safaa A. S. (Department of Biology, College of Science for (Women), University of Baghdad) ;
  • Al-Halbosiy, Mohammad M. F. (Biotechnology Research Center, Al-Nahrain University)
  • Received : 2022.03.15
  • Accepted : 2022.05.03
  • Published : 2022.06.28

Abstract

Colibactins (clb) and Cytotoxic Necrotizing Factors (cnf) are virulence factors that impact cell cycle through cellular differentiation, proliferation, and apoptosis. Urinary tract infections (UTIs) are the most common among type of infection among outpatients, with a lifetime incidence of about 60-65% in adult females. Here, we sought to isolate uropathogenic Escherichia coli (UPCE) from urine specimens and investigates the prevalence of clb A, B and cnf 1, 2 genes among these isolates. A total of 110 E. coli isolates were collected from patients with UTIs. All the isolates were examined for their hemolytic activity and only 46 isolates showed a halo zone of hemolysis on blood agar. The collected UPEC isolates were screened for the existence of clb A, B and cnf genes. The results revealed that out of 110 isolates, 28 harbored the clbA gene, 40 harbored clb B, and 24 isolates harboured cnf1. 13 isolates harbored clbA, clbB, and cnf1 genes, while no cnf2 gene was detected among isolates. The molecular detection revealed that 8 out of 28 hemolytic isolates carrying the clbA, 11 out of 40 were carrying clbB, 1 out of 24 were carrying cnf 1, and 5 out of 9 carrying clbA+clbB. Furthermore, 7 out of 13 isolates were hemolytic and carrying clbA, clbB, and cnf1 genes. Finally, we investigated the cytotoxicity of E. coli harboring clb and cnf genes, eukaryotic REF cells were exposed to E. coli producing colibactin, which induces DNA damage and leads to cell cycle arrest, senescence and death.

Keywords

References

  1. Lese TD, Molbak L. 2009. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol. 11: 2194-2206. https://doi.org/10.1111/j.1462-2920.2009.01941.x
  2. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat. Rev. Microb. 2: 123-140. https://doi.org/10.1038/nrmicro818
  3. Feng Y, Mannion A, Madden CM, Swennes AG, Townes C, Byrd C, et al. 2017. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog. 9: 71. https://doi.org/10.1186/s13099-017-0220-y
  4. Patel IR, Gangiredla J, Mammel MK, Lampel KA, Elkins CA, Lacher D. 2018. Draft genome sequences of the Escherichia coli reference (ECOR) collection. Microbiol. Resour. Announc. e07: 1133-18.
  5. El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, et al. 2017. Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Front. Cell. Infect. Microbial. 7: 208. https://doi.org/10.3389/fcimb.2017.00208
  6. Lax AJ. 2007. New genotoxin shows diversity of bacterial attack mechanisms. Trends Mol. Med. 13: 91-93. https://doi.org/10.1016/j.molmed.2007.01.001
  7. Hussein MT, Al-Qaysi SA, Rathi MH, Hussein QI, Moussa TA. 2020. Prevalence and characterization of some colibactin genes in clinical Enterobacteriaceae isolates from Iraqi Patients. Baghdad Sci. J. 17: (Suppl.) 1113-1123. https://doi.org/10.21123/bsj.2020.17.3(Suppl.).1113
  8. Brotherton CA. 2016. Investigations of the biosynthesis and structure of colibactin, a cytotoxin made by human-associated Escherichia coli (Doctoral dissertation), Harvard University, Graduate school of Arts & Science.
  9. Fais T, Delmas J, Barnich N, Bonnet, R, Dalmasso G. 2018. Colibactin: more than a new bacterial toxin. Toxins 10: 151. https://doi.org/10.3390/toxins10040151
  10. Oswald E, De Rycke J, Guillot JF, Boivin R. 1989. Cytotoxic effect of multinucleation in HeLa cell cultures associated with the presence of Vir plasmid in Escherichia coli strains. FEMS Microbial. Lett. 58: 95-99. https://doi.org/10.1111/j.1574-6968.1989.tb03025.x
  11. Landraud L, Gauthier M, Fosse T, Boquet P. 2000. Frequency of Escherichia coli strains producing the cytotoxic necrotizing factor (CNF1) in nosocomial urinary tract infections. Lett. Appl. Microbiol. 30: 213-216. https://doi.org/10.1046/j.1472-765x.2000.00698.x
  12. Bossuet-Greif N, Belloy M, Boury M, Oswald E, Nougayrede JP. 2017. Protocol for HeLa cells infection with Escherichia coli strains producing colibactin and quantification of the induced DNA-damage. Bio Protoc. 7: e2520.
  13. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. 2006. Escherichia coli induces DNA doublestrand breaks in eukaryotic cells. Science 313: 848-851. https://doi.org/10.1126/science.1127059
  14. McCoy CS, Mannion AJ, Feng Y, Madden CM, Artim SC, Au GG, et al. 2021. Cytotoxic Escherichia coli strains encoding colibactin, cytotoxic necrotizing factor, and cytolethal distending toxin colonize laboratory common marmosets (Callithrix jacchus). Sci. Rep. 11: 2309. https://doi.org/10.1038/s41598-020-80000-1
  15. Slavchev G, Pisareva E, Markova N. 2009. Virulence of uropathogenic Escherichia coli. J. Cult. Coll. 6: 3-9.
  16. Sharma S, Bhat GK, Shenoy S. 2007. Virulence factors and drug resistance in Escherichia coli isolated from extraintestinal infections. Indian J. Med. Microbiol. 25: 369-373. https://doi.org/10.4103/0255-0857.37341
  17. Dubois D, Delmas, J, Cady A, Robin F, Sivignon A, Oswald E, et al. 2010. Cyclomodulins in urosepsis strains of Escherichia coli. J. Clin. Microbiol. 48: 2122-2129. https://doi.org/10.1128/JCM.02365-09
  18. Cavalieri SJ, Harbeck RJ, McCarter YS, Ortez JH, Rankin ID, Sautter RL, et al. 2005. Manual of antimicrobial susceptibility testing. USA. American society for Microbiology Press.
  19. Johnson JR, Johnston B, Kuskowski MA, Nougayrede JP, Oswald E. 2008. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J. Clin. Microbiol. 46: 3906-3911. https://doi.org/10.1128/JCM.00949-08
  20. Al-Saily HM, Al-Halbosiy M, Al-Hady FN. 2019. Cytotoxic and apoptotic effects of cyproterone acetate against cancer cells and normal cells. J. Biotechnol. Res. Cen. 13: 68-74. https://doi.org/10.24126/jobrc.2019.13.1.571
  21. Tronnrt S, Oswald E. 2018. Quantification of colibactin-associated genotoxicity in HeLa cells by in cell western (ICW) using -H2AX as a marker. Bio Protoc. 8: e2771.
  22. Mohammed ZY, Al-Jumaily EF, Yaseen NY. 2009. In vitro cytotoxic study for partially purified resveratrol extracted from grape skin fruit Vitis vinifera. J. Biotechnol. Res. Cen. 3: 40-47. https://doi.org/10.24126/jobrc.2009.3.2.66
  23. Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. 2019. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: experimental and bioinformatics analyses. Gut Pathog. 11: 22. https://doi.org/10.1186/s13099-019-0304-y
  24. SAS. 2012. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA.
  25. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13: 269-284. https://doi.org/10.1038/nrmicro3432
  26. Harwalkar A, Gupta S, Rao A, Srinivasa H. 2014. Lower prevalence of hlyD, papC and cnf-1 genes in ciprofloxacin-resistant uropathogenic Escherichia coli than their susceptible counterparts isolated from southern India. J. Infect. Public Health 7: 413-419. https://doi.org/10.1016/j.jiph.2014.04.002
  27. Derakhshandeh A, Firouzi R, Motamedifar M, Arabshahi S, Novinrooz A, Boroojeni AM, et al. 2015. Virulence characteristics and antibiotic resistance patterns among various phylogenetic groups of uropathogenic Escherichia coli isolates. JPN J. Infect. Dis. 68: 428-431. https://doi.org/10.7883/yoken.JJID.2014.327
  28. Piatti G, Mannini A, Balistreri M, Schito AM. 2008. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J. Clin. Microbiol. 4: 480-487.
  29. Sonstein SA, Burnham JC. 1993. Effect of low concentrations of quinolone antibiotics on bacterial virulence mechanisms. Diagn. Microbiol. Infect. Dis. 16: 277-289. https://doi.org/10.1016/0732-8893(93)90078-L
  30. Krieger JN, Dobrindt U, Riley DE, Oswald E. 2011. Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 77: 1420-1425. https://doi.org/10.1016/j.urology.2010.12.059
  31. Marini RP, Taylor NS, Liang AY, Knox KA, Pena JA, Schauer DB, et al. 2004. Characterization of hemolytic Escherichia coli strains in ferrets: recognition of candidate virulence factor CNF1. J. Clin. Microbiol. 42: 5904-5908. https://doi.org/10.1128/JCM.42.12.5904-5908.2004
  32. Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallee A, et al. 2014. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J. Gastroenterol. 20: 6560. https://doi.org/10.3748/wjg.v20.i21.6560
  33. Kurnick SA, Mannion AJ, Feng Y, Madden CM, Chamberlain P, Fox JG. 2019. Genotoxic Escherichia coli strains encoding colibactin, cytolethal distending toxin, and cytotoxic necrotizing factor in laboratory rats. Comp. Med. 69: 103-113. https://doi.org/10.30802/aalas-cm-18-000099
  34. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313: 848-851. https://doi.org/10.1126/science.1127059
  35. Lemonnier, M, Landraud L, Lemichez E. 2007. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbial. Rev. 31: 515-534. https://doi.org/10.1111/j.1574-6976.2007.00078.x
  36. Zdziarski J, Svanborg C, Wullt B, Hacker J, Dobrindt U. 2008. Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation. Infect. Immun. 76: 695-703. https://doi.org/10.1128/IAI.01215-07