과제정보
This study was supported by grants from the Korea Research Institute of Bioscience and Biotechnology Research Initiative Program (KRIBB) of the Republic of Korea (grant. nos. KGM5522211 and KGS1232221).
참고문헌
- Li J, Wang K, Huang B, Li R, Wang X, Zhang H, et al. 2021. The receptor for advanced glycation end products mediates dysfunction of airway epithelial barrier in a lipopolysaccharides-induced murine acute lung injury model. Int. Immunopharmacol. 93: 107419. https://doi.org/10.1016/j.intimp.2021.107419
- Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, et al. 2021. The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells 10: 897. https://doi.org/10.3390/cells10040897
- Bhargava M, Wendt CH. 2012. Biomarkers in acute lung injury. Transl. Res. 159: 205-217. https://doi.org/10.1016/j.trsl.2012.01.007
- Li H, Yang T, Fei, Z. 2021. miR26a5p alleviates lipopolysaccharide-induced acute lung injury by targeting the connective tissue growth factor. Mol. Med. Rep. 23: 5.
- Laskin DL, Malaviya R, Laskin JD. 2019. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol. Sci. 168: 287-301. https://doi.org/10.1093/toxsci/kfy309
- Min JH, Kim SM, Park JW, Kwon NH, Goo SH, et al. 2021. Lagerstroemia ovalifolia exerts anti-inflammatory effects in mice of LPS induced ALI via downregulating of MAPK and NF-κB activation. J. Microbiol. Biotechnol. 31: 1501-1507. https://doi.org/10.4014/jmb.2107.07023
- Guimaraes LMF, Rossini CVT, Lameu C. 2021. Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide. 111-112: 64-71. https://doi.org/10.1016/j.niox.2021.04.003
- Giuliano F, Warner TD. 2002. Origins of prostaglandin E2: involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems. J. Pharmacol. Exp. Ther. 303: 1001-1006. https://doi.org/10.1124/jpet.102.041244
- Park JW, Ryu HW, Ahn HI, Min JH, Kim SM, Kim MG, et al. 2020. The anti-inflammatory effect of Trichilia martiana C. DC. in the Lipopolysaccharide-stimulated inflammatory response in macrophages and airway epithelial cells and in LPS-challenged mice. J. Microbiol. Biotechnol. 30: 1614-1625. https://doi.org/10.4014/jmb.2006.06042
- Ding H, Ci X, Cheng H, Yu Q, Li D. 2019. Chicoric acid alleviates lipopolysaccharide-induced acute lung injury in mice through anti-inflammatory and anti-oxidant activities. Int. Immunopharmacol. 66: 169-176. https://doi.org/10.1016/j.intimp.2018.10.042
- Yang S, Yu Z, Wang L, Yuan T, Wang X, Zhang X, et al. 2017. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-κB activition. J. Ethnopharmacol 200: 147-155. https://doi.org/10.1016/j.jep.2017.02.013
- Min JH, Kim MG, Kim SM, Park JW, Chun W, Lee HJ, et al. 2020. 3,4,5-Trihydroxycinnamic acid exerts a protective effect on pulmonary inflammation in an experimental animal model of COPD. Int. Immunopharmacol. 85: 106656. https://doi.org/10.1016/j.intimp.2020.106656
- Lee JW, Chun W, Kwon OK, Park HA, Lim Y, Lee JH, et al. 2018. 3,4,5-Trihydroxycinnamic acid attenuates lipopolysaccharide (LPS)-induced acute lung injury via downregulating inflammatory molecules and upregulating HO-1/AMPK activation. Int. Immunopharmacol. 64: 123-130. https://doi.org/10.1016/j.intimp.2018.08.015
- Navratilova A, Schneiderova K, Vesela D, Hanakova Z, Fontana A, Dall'Acqua S, et al. 2013. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry 89: 104-113. https://doi.org/10.1016/j.phytochem.2013.01.002
- Ryu HW, Park YJ, Lee SU, Lee S, Yuk HJ, Seo KH. et al. 2017. Potential anti-inflammatory effects of the fruits of Paulownia tomentosa. J. Nat. Prod. 80: 2659-2665. https://doi.org/10.1021/acs.jnatprod.7b00325
- Ali SA, Ibrahim NA, Mohammed MMD, El-Hawary S, Refaat EA. 2019. The potential chemo preventive effect of ursolic acid isolated from Paulownia tomentosa, against N-diethylnitrosamine: initiated and promoted hepatocarcinogenesis. Heliyon 5: e01769. https://doi.org/10.1016/j.heliyon.2019.e01769
- Lee JW, Ryu HW, Kim DY, Kwon OK, Jang HJ, Kwon HJ, et al. 2021. Biflavonoid-rich fraction from Daphne pseudomezereum var. koreana Hamaya exerts anti-inflammatory effect in an experimental animal model of allergic asthma. J. Ethnopharmacol. 265: 113386. https://doi.org/10.1016/j.jep.2020.113386
- Kim SM, Min JH, Kim JH, Choi J, Park JM, Lee J, et al. 2022. Methyl p-hydroxycinnamate exerts anti-inflammatory effects in mouse models of lipopolysaccharide-induced ARDS. Mol. Med. Rep. 25: 37.
- Kim SM, Ryu HW, Kwon OK, Hwang D, Kim MG, Min JH, et al. 2021. Callicarpa japonica Thunb. ameliorates allergic airway inflammation by suppressing NF-κB activation and upregulating HO-1 expression. J. Ethnopharmacol. 267: 113523. https://doi.org/10.1016/j.jep.2020.113523
- Kwon OK, Lee JW, Xuezhen X, Harmalkar DS, Song JG, Park JW, et al. 2020. DK-1108 exerts anti-inflammatory activity against phorbol 12-myristate 13-acetate-induced inflammation and protective effect against OVA-induced allergic asthma. Biomed. Pharmacother. 132: 110950. https://doi.org/10.1016/j.biopha.2020.110950
- Huang X, Xiu H, Zhang S, Zhang G. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm. 2018: 1264913. https://doi.org/10.1155/2018/1264913
- Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. 2020. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm. Res. 69: 883-895. https://doi.org/10.1007/s00011-020-01378-2
- He Q, Wang Y, Yang H, Wang J, Zhang J, Liu D. 2021. Apelin36 protects against lipopolysaccharide-induced acute lung injury by inhibiting the ASK1/MAPK signaling pathway. Mol. Med. Rep. 23: 6.
- Yang L, Luo W, Zhang Q, Hong S, Wang Y, Samorodov AV, et al. 2021. Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. Phytomedicine 93: 153785. https://doi.org/10.1016/j.phymed.2021.153785
- Badamjav R, Sonom D, Wu Y, Zhang Y, Kou J, Yu B, et al. 2020. The protective effects of Thalictrum minus L. on lipopolysaccharide-induced acute lung injury. J. Ethnopharmacol. 248: 112355. https://doi.org/10.1016/j.jep.2019.112355
- Ryu HW, Lee JW, Kim MO, Lee RW, Kang MJ, Kim SM, et al. 2022. Daphnodorin C isolated from the stems of Daphne kiusiana Miquel attenuates airway inflammation in a mouse model of chronic obstructive pulmonary disease. Phytomedicine 96: 153848. https://doi.org/10.1016/j.phymed.2021.153848
- Lee JW, Kim MO, Song YN, Min JH, Kim SM, Kang MJ, et al. 2021. Compound K ameliorates airway inflammation and mucus secretion through the regulation of PKC signaling in vitro and in vivo. J. Ginseng Res. 46: 496-504.
- Kim MO, Lee JW, Lee JK, Song YN, Oh ES, Ro H, et al. 2022. Black ginseng extract suppresses airway inflammation induced by cigarette smoke and lipopolysaccharides in vivo. Antioxidants 11: 679. https://doi.org/10.3390/antiox11040679