Acknowledgement
The authors are grateful to Associate Professor Dr. Nantana Srisuk of Kasetsart University, the director of the research program. This work was supported by Kasetsart University Research and Development Institute, KURDI under Grant no. FF(KU)18.64.
References
- Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. 2017. Aflatoxins: a global concern for food safety, human health and their management. Front. Microbiol. 7: 2170. https://doi.org/10.3389/fmicb.2016.02170
- Koppen R, Koch M, Siegel D, Merkel S, Maul R, Nehls I. 2010. Determination of mycotoxins in foods: current state of analytical methods and limitations. Appl. Microbiol. Biotechnol. 86: 1595-1612. https://doi.org/10.1007/s00253-010-2535-1
- World Health Organization (WHO). 2018. Aflatoxins. Department of Food Safety and Zoonoses. Ref. No.: WHO/NHM/FOS/RAM/18.1. WHO, Geneva, Switzerland. Available at: https://www.who.int/foodsafety/Food_Safety_Digest_Aflatoxins_EN.pdf. Accessed December 24, 2011.
- International Agency for Research on Cancer (IARC). 2002. IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 82, some traditional herbal medicines, some mycotoxins, naphthalene and styrene. pp. 171-300. IARCPress, Lyon.
- Milovanovic V, Smutka L. 2017. Asian countries in the global rice market. Acta Univ. Agric. et Silvic. Mendelianae Brun. 65: 679-688. https://doi.org/10.11118/actaun201765020679
- Ali N. 2019. Aflatoxins in rice: worldwide occurrence and public health perspectives. Toxicol. Rep. 6: 1188-1197. https://doi.org/10.1016/j.toxrep.2019.11.007
- Niknejad F, Zaini F, Faramarzi M, Amini M, Kordbacheh P, Mahmoudi M, et al. 2012. Candida parapsilosis as a potent biocontrol agent against growth and aflatoxin production by Aspergillus Species. Iran. J. Public Health. 41:72-80.
- Jaibangyang S, Nasanit R, Limtong S. 2020. Biological control of aflatoxin-producing Aspergillus flavus by volatile organic compound-producing antagonistic yeasts. BioControl 65: 377-386. https://doi.org/10.1007/s10526-020-09996-9
- Jaibangyang S, Nasanit R, Limtong S. 2021. Effects of temperature and relative humidity on aflatoxin B1 reduction in corn grains and antagonistic activities against aflatoxin-producing Aspergillus flavus by a volatile organic compound-producing yeast, Kwoniella heveanensis DMKU-CE82. BioControl 66: 433-443. https://doi.org/10.1007/s10526-021-10082-x
- Hua SS, Beck JJ, Sarreal SB, Gee W. 2014. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res. 30: 71-78. https://doi.org/10.1007/s12550-014-0189-z
- Buzzini P, Martini A, Cappelli F, Pagnoni UM. Davoli P. 2003. A study on volatile organic compounds (VOCs) produced by tropical ascomycetous yeasts. Antonie Van Leeuwenhoek 84: 301-311. https://doi.org/10.1023/A:1026064527932
- Schulz-Bohm K, Martin-Sanchez L, Garbeva P. 2017. Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front. Microbiol. 8: 2484. https://doi.org/10.3389/fmicb.2017.02484
- Di Francesco A, Ugolini L, Lazzeri L, Mari M. 2015. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol. Control 81: 8-14. https://doi.org/10.1016/j.biocontrol.2014.10.004
- Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, et al. 2018. Effect of yeast volatile organic compounds on ochratoxin a-producing Aspergillus carbonarius and A. ochraceus. Int. J. Food Microbiol. 284: 1-10. https://doi.org/10.1016/j.ijfoodmicro.2018.06.023
- Khunnamwong P, Lertwattanasakul N, Jindamorakot S, Suwannarach N, Matsui K, Limtong S. 2020. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiologica 65: 573-590. https://doi.org/10.1007/s12223-019-00764-6
- Khunnamwong P, Jindamorakot S, Limtong S. 2018. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol. 122: 785-799. https://doi.org/10.1016/j.funbio.2018.04.006
- Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, et al. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101: 859-869. https://doi.org/10.1094/PHYTO-09-10-0255
- Choinska R, Piasecka-Jozwiak K, Chablowska B, Dumka J, Lukaszewicz A. 2020. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie Van Leeuwenhoek 113: 1135-1146. https://doi.org/10.1007/s10482-020-01420-7
- Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. 2019. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiol. 82: 70-74. https://doi.org/10.1016/j.fm.2019.01.008
- Liu P, Cheng Y, Yang M, Liu Y, Chen K, Long CA, et al. 2014. Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol. 14: 242. https://doi.org/10.1186/s12866-014-0242-2
- Chang PK, Hua SS, Sarreal SB, Li RW. 2015. Suppression of aflatoxin biosynthesis in Aspergillus flavus by 2-phenylethanol is associated with stimulated growth and decreased degradation of branched-chain amino acids. Toxins 7: 3887-3902. https://doi.org/10.3390/toxins7103887
- Rezende DC, Fialho MB, Brand SC, Blumer S, Pascholati SF. 2015. Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. Afr. J. Microbiol. Res. 9: 1527-1535. https://doi.org/10.5897/AJMR2015.7425
- alage Don SM, Schmidtke LM, Gambetta JM, Steel CC. 2021. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata. Res. Microbiol. 172:103788. https://doi.org/10.1016/j.resmic.2020.10.003
- Wu J-J, Huang J-W, Deng W-L. 2020. Phenylacetic acid and methylphenyl acetate from the biocontrol bacterium Bacillus mycoides BM02 suppress spore germination in Fusarium oxysporum f. sp. lycopersici. Front. Microbiol. 11: 569263. https://doi.org/10.3389/fmicb.2020.569263
- Limtong S, Nasanit R. 2017. Phylloplane yeasts in tropical climates, pp. 199-233. In Buzzini P, Lachance MA, Yurkov A (eds.), Yeasts in Natural Ecosystems: Diversity. Springer, Cham.
- Pagans E, Font X, Sanchez A. 2006. Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J. Hazard. Mater. 131: 179-186. https://doi.org/10.1016/j.jhazmat.2005.09.017
- Tilocca B, Cao A, Migheli Q. 2020. Scent of a killer: Microbial volatilome and its role in the biological control of plant pathogens. Front. Microbiol. 11: 41. https://doi.org/10.3389/fmicb.2020.00041