DOI QR코드

DOI QR Code

Effects of floating wave barriers on wave-induced forces exerted to offshore-jacket structure

  • Osgouei, Arash Dalili (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Poursorkhabi, Ramin Vafaei (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Hosseini, Hamed (Department of Civil Engineering, Dolatabad Branch, Islamic Azad University) ;
  • Qader, Diyar N. (Department of Civil Engineering, College of Engineering, Cihan University-Erbil) ;
  • Maleki, Ahmad (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Ahmadi, Hamid (Faculty of Civil Engineering, University of Tabriz)
  • Received : 2021.05.19
  • Accepted : 2022.04.12
  • Published : 2022.07.10

Abstract

The main objective of the present research was investigating the effects of a floating wave barrier installed in front of an offshore jacket structure on the wave height, base shear, and overturning moment. A jacket model with the height of 4.55 m was fabricated and tested in the 402 m-long wave flume of NIMALA marine laboratory. The jacket was tested at the water depth of 4 m subjected to the random waves with a JONSWAP energy spectrum. Three input wave heights were chosen for the tests: 20 cm, 23 cm, and 28 cm. Two different cross sections with the same area were selected for the wave barrier: square and rhombus. Results showed that the average decrease in the jacket's base shear due to the presence of a floating wave barrier with square and rhombus cross section was 24.67% and 34.29%, respectively. The use of wave barriers with square and rhombus cross sections also resulted in 19.78% and 33.11% decrease in the jacket's overturning moment, respectively. Hence, it can be concluded that a floating wave barrier can significantly reduce the base shear and overturning moment in an offshore jacket structure; and a rhombus cross section is more effective than an equivalent square section.

Keywords

Acknowledgement

The authors would like to thank the technical staff of NIMALA marine laboratory specially Eng. Taghi Aliakbari and Eng. Seyyed Abolfazl Hashemi. The support from the Vice-chancellery for Research and Technology of Islamic Azad University-Maragheh Branch is also highly appreciated.

References

  1. Abdel Raheem, S.E., Abdel Aal, E.M., AbdelShafy, A.G.A., Fahmy, M.F.M. and Mansour, M.H. (2020), "Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis", Earthq. Struct., 18(4), 407-421. https://doi.org/10.12989/eas.2020.18.4.407.
  2. Abed, Y., Bouzid, D.A., Bhattacharya, S. and Aissa, M.H. (2016), "Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristic", Earthq. Struct., 10(5), 1143-1179. https://doi.org/10.12989/eas.2016.10.5.1143.
  3. Abul-Azm, A.G. and Gesraha, M.R. (2000), "Approximation to the hydrodynamics of floating pontoons under oblique waves", Ocean Eng., 27(4), 365-384. https://doi.org/10.1016/S0029-8018(98)00057-2.
  4. Asgarian, B., Amiri, M. and Ghafooripour, A. (2009), "Damage detection in jacket type offshore platforms using modal strain energy", Struct. Eng. Mech., 33(3), 325-337. https://doi.org/10.12989/sem.2009.33.3.325.
  5. Azandariani, M.G., Gholami, M., Nikzad, A., Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/anr.2022.12.1.037.
  6. Chan, E.S., Cheong, H.F. and Tan, B.C. (1995), "Laboratory study of plunging wave impacts on vertical cylinders", Coast. Eng., 25(1-2), 87-107. https://doi.org/10.1016/0378-3839(94)00042-V.
  7. Christensen, E.D., Bingham, H.B., Skou Friis, A.P., Larsen, A.K. and Jensen, K.L. (2018), "An experimental and numerical study of floating breakwaters", Coast. Eng., 137, 43-58. https://doi.org/10.1016/j.coastaleng.2018.03.002.
  8. Dong, G.H., Zheng, Y.N., Li, Y.C., Teng, B., Guan, C.T. and Lin, D.F. (2008), "Experiments on wave transmission coefficients of floating breakwaters", Ocean Eng., 35(8-9), 931-938. https://doi.org/10.1016/j.oceaneng.2008.01.010.
  9. Gesraha, M.R. (2006), "Analysis of ∏ shaped floating breakwater in oblique waves: I. Impervious rigid wave boards", Appl. Ocean Res., 28(5), 327-338. https://doi.org/10.1016/j.apor.2007.01.002.
  10. Ghanbari-Ghazijahani, T., Nabati, A., Gorji Azandariani, M. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin Wall. Struct., 149, 106614. https://doi.org/10.1016/j.tws.2020.106614.
  11. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  12. Gholhaki, M., Eshrafi, B., Gorji Azandariani, M. and Rezaeifar, O. (2021), "Seismic assessment of linked-column frame structural system considering soil-structure effects", Struct., 33, 2264-2272. https://doi.org/10.1016/j.istruc.2021.06.005.
  13. Goda, Y., Haranaka, S. and Kitahata, M. (1966), "Study of impulsive breaking wave forces on piles", Rep. Port Harb. Tech. Res. Inst., 6(5), 1-30.
  14. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  15. Gorji Azandariani, M., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021a), "Concrete- and timber-filled tubes under axial compression-Numerical and theoretical study", J. Build. Eng., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231.
  16. Gorji Azandariani, M., Gholami, M., Vaziri, E. and Nikzad, A. (2021b), "Nonlinear static analysis of a bi-directional functionally graded microbeam based on a nonlinear elastic foundation using modified couple stress theory", Arab. J. Sci. Eng., 46(12), 12641-12651. https://doi.org/10.1007/s13369-021-06053-0.
  17. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203 https://doi.org/10.1016/j.engstruct.2019.109866.
  18. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021c), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Struct., 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009.
  19. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2020c), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33, 101821. https://doi.org/10.1016/j.jobe.2020.101821.
  20. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021d), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  21. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020d), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  22. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021e), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  23. Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021f), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Struct., 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046.
  24. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021g), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  25. Hildebrandt, A. (2013), "Hydrodynamics of breaking waves on offshore wind turbine structures", Doctoral Dissertation, Gottfried Wilhelm Leibniz Universitat Hannover, Hannover.
  26. Kalogeropoulos, G.I., Tsonos, A.D.G., Konstantinidis, D., Iakovidis, P.E., Kalogeropoulos, G.I., Tsonos, A.D.G., Konstantinidis, D. and Iakovidis, P.E. (2019), "Earthquakes and Structures", Earthq. Struct., 17(1), 115. https://doi.org/10.12989/eas.2019.17.1.115.
  27. Min, J., Yi, J.H. and Yun, C.B. (2015), "Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure", Smart Struct. Syst., 15(2), 283-297. https://doi.org/10.12989/sss.2015.15.2.283.
  28. Morison, J.R., Johnson, J.W. and Schaaf, S.A. (1950), "The force exerted by surface waves on piles", J. Pet. Technol., 2(5), 149-154. https://doi.org/10.2118/950149-g.
  29. National Iranian Marine Laboratory (2014), National Iranian Marine Laboratory, https://doi.org/http://www.nimala.ir.
  30. Rahman, M.A., Mizutani, N. and Kawasaki, K. (2006), "Numerical modeling of dynamic responses and mooring forces of submerged floating breakwater", Coast. Eng., 53(10), 799-815. https://doi.org/10.1016/j.coastaleng.2006.04.001.
  31. Rahman, M.S., Islam, M.S., Do, J. and Kim, D. (2017), "Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine", Struct. Eng. Mech., 63(3), 303-315. https://doi.org/10.12989/sem.2017.63.3.303.
  32. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129. https://doi.org/10.12989/sem.2021.80.2.129.
  33. Sannasiraj, S.A., Sundar, V. and Sundaravadivelu, R. (1998), "Mooring forces and motion responses of pontoon-type floating breakwaters", Ocean Eng., 25(1), 27-48. https://doi.org/10.1016/s0029-8018(96)00044-3.
  34. Sawaragi, T. and Nochino, M. (1984), "Impact forces of nearly breaking wave on a vertical circular cylinder", Coast. Eng. J., 27, 249-263. https://doi.org/10.1080/05785634.1984.11924391.
  35. Shahverdi, S., Lotfollahi-Yaghin, M.A. and Asgarian, B. (2013), "Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform", Smart Struct. Syst., 11(6), 589-604. https://doi.org/10.12989/sss.2013.11.6.589.
  36. Sharma, R.K., Domala, V. and Sharma, R. (2019), "Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads", Ocean Syst. Eng., 9(4), 369-390. https://doi.org/10.12989/ose.2019.9.4.369.
  37. Sharmin, F., Hussan, M., Kim, D. and Cho, S.G. (2017), "Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle", Earthq. Struct., 13(1), 39-50. https://doi.org/10.12989/eas.2017.13.1.039.
  38. Shi, X., Li, H.J., Yang, Y.C. and Gong, C. (2008), "A model experiment of damage detection for offshore jacket platforms based on partial measurement", Struct. Eng. Mech., 29(3), 311-325. https://doi.org/10.12989/sem.2008.29.3.311.
  39. Sruthi, C. and Sriram, V. (2017), "Wave impact load on jacket structure in intermediate water depth", Ocean Eng., 140, 183-194. https://doi.org/10.1016/j.oceaneng.2017.05.023.
  40. Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., 35(5), 635-640. https://doi.org/10.12989/scs.2020.35.5.635.
  41. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/sss.2021.28.4.579.
  42. Vaziri, E., Gholami, M. and Gorji Azandariani, M. (2021), "The Wall-Frame Interaction Effect in Corrugated Steel Plate Shear Walls Systems", Int. J. Steel Struct., 21(5), 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
  43. Wang, B., Han, Q. and Jia, J. (2019), "Seismic response analysis of isolated offshore bridge with friction sliding bearings", Earthq. Struct., 16(6), 641-654. https://doi.org/10.12989/eas.2019.16.6.641.