Acknowledgement
This work was supported by the National Research Foundation of Korea grant funded by the Korean government (2021R1F1A1060072 and 2019M3E5D5066666), and by the Hankuk University of Foreign Studies Research Fund (of 2022).
References
- Ligon BL. 2004. Penicillin: its discovery and early development. Semin. Pediatr. Infect. Dis 15: 52-57. https://doi.org/10.1053/j.spid.2004.02.001
- Lewis K. 2012. Antibiotics: recover the lost art of drug discovery. Nature 485: 439-440. https://doi.org/10.1038/485439a
- Martinez JL, Baquero F. 2014. Emergence and spread of antibiotic resistance: setting a parameter space. Ups. J. Med. Sci. 119: 68-77. https://doi.org/10.3109/03009734.2014.901444
- Jim O'Neill. 2016. Nat. Rev. Drug Discov. 15: 526. https://doi.org/10.1038/nrd.2016.160
- Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
- Bassetti M, Righi E, Vena A, Graziano E, Russo A, Peghin M. 2018. Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug- resistant/extensively drug-resistant/pandrug-resistant bacteria. Curr. Opin. Crit. Care 24: 385-393. https://doi.org/10.1097/MCC.0000000000000534
- Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A. 2021. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann. Clin. Microbiol. Antimicrob. 20: 30. https://doi.org/10.1186/s12941-021-00433-y
- Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N. 2021. Phage therapeutics: from promises to practices and prospectives. Appl. Microbiol. Biotechnol. 105: 9047-9067. https://doi.org/10.1007/s00253-021-11695-z
- Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, et al. 2021. Bacteriophage as a novel therapeutic weapon for killing colistin-resistant multi-drug-resistant and extensively drug-resistant Gram-negative bacteria. Curr. Microbiol. 78: 4023-4036. https://doi.org/10.1007/s00284-021-02662-y
- Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317-327. https://doi.org/10.1038/nrmicro2315
- Meile S, Du J, Dunne M, Kilcher S, Loessner MJ. 2021. Engineering therapeutic phages for enhanced antibacterial efficacy. Curr. Opin. Virol. 52: 182-191.
- Samson JE, Magadan AH, Sabri M, Moineau S. 2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11: 675-687. https://doi.org/10.1038/nrmicro3096
- Young I, Wang I, Roof WD. 2000. Phages will out: strategies of host cell lysis. Trends Microbiol. 8: 120-128. https://doi.org/10.1016/S0966-842X(00)01705-4
- Nelson D, Loomis L, Fischetti VA. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 4107-4112. https://doi.org/10.1073/pnas.061038398
- Jado I, Lopez R, Garcia E, Fenoll A, Casal J, Garcia P, et al. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother. 52: 967-973. https://doi.org/10.1093/jac/dkg485
- Traczewski MM, Ambler JE, Schuch R. 2021. Determination of MIC quality control parameters for exebacase, a novel lysin with antistaphylococcal activity. J. Clin. Microbiol. 59: e0311720. https://doi.org/10.1128/JCM.03117-20
- Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83: 299-365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4
- Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. 2014. Engineered endolysin-based 'Artilysins' to combat multidrug-resistant gram-negative pathogens. mBio 5: e01379-01314.
- Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay J-P, Defraine V, et al. 2014. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58: 3774-3784. https://doi.org/10.1128/AAC.02668-14
- Saeed SI, Mergani A, Aklilu E, Kamaruzzman NF. 2022. Antimicrobial peptides: bringing solution to the rising threats of antimicrobial resistance in livestock. Front. Vet. Sci. 9: 851052. https://doi.org/10.3389/fvets.2022.851052
- Moore AJ, Beazley WD, Bibby MC, Devine DA. 1996. Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37: 1077-1089. https://doi.org/10.1093/jac/37.6.1077
- Abdelkader K, Gutierrez D, Tames-Caunedo H, Ruas-Madiedo P, Safaan A, Khairalla AS, et al. 2022. Engineering a lysin with intrinsic antibacterial activity (LysMK34) by cecropin A fusion enhances its antibacterial properties against Acinetobacter baumannii. Appl. Environ. Microbiol. 88: e0151521. https://doi.org/10.1128/AEM.01515-21
- Hong H-W, Kim YD, Jang J, Kim MS, Song M, Myung H. 2022. Combination effect of engineered endolysin EC340 with antibiotics. Front. Microbiol. 13: 821936. https://doi.org/10.3389/fmicb.2022.821936
- Hockett KL, Baltrus DA. 2017. Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J. Vis. Exp. 14: 55064.
- Kim MS, Kim YD, Hong SS, Park K, Ko KS, Myung H. 2015. Phage-encoded colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain. Appl. Environ. Microbiol. 81: 900-909. https://doi.org/10.1128/AEM.02606-14
- Gouet P, Courcelle E, Stuart DI, Metoz F. 1999. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305-308. https://doi.org/10.1093/bioinformatics/15.4.305
- Sievers F, Higgins DG. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27: 135-145. https://doi.org/10.1002/pro.3290
- Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. 2005. InterProScan: protein domains identifier. Nucleic Acids Res. 33: W116-120. https://doi.org/10.1093/nar/gki442
- Blasco L, Ambroa A, Trastoy R, Bleriot I, Moscoso M, Fernandez-Garcia L, et al. 2020. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci. Rep. 10: 7163. https://doi.org/10.1038/s41598-020-64145-7
- Murray E, Draper LA, Ross RP, Hill C. 2021. The advantages and challenges of using endolysins in a clinical setting. Viruses 13: 680. https://doi.org/10.3390/v13040680
- Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y. 2016. From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem. Soc. Trans 44: 123-128. https://doi.org/10.1042/BST20150192
- Briers Y, Lavigne R. 2015. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol. 10: 377-390. https://doi.org/10.2217/fmb.15.8