References
- Enzinger PC, Mayer RJ. 2013. Esophageal cancer. N. Engl. J. Med. 349: 2241-2252. https://doi.org/10.1056/NEJMra035010
- Jiang S, Zhang Q, Su Y, Pan L. 2018. Network-based differential analysis to identify molecular features of tumorigenesis for esophageal squamous carcinoma. Molecules 23: 88. https://doi.org/10.3390/molecules23010088
- Fukushima A, Kuroha T, Nagai K, Hattori Y, Kobayashi M, Nishizawa T, et al. 2020. Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites 10: 68. https://doi.org/10.3390/metabo10020068
- Wu Y, Zhu Y, Li S, Zeng M, Chu J, Hu P et al. 2017. Terrein performs antitumor functions on esophageal cancer cells by inhibiting cell proliferation and synergistic interaction with cisplatin. Oncol. Lett. 13: 2805-2810. https://doi.org/10.3892/ol.2017.5758
- Huang X, Rong H, Lin P, Wu Q, Yao G, Hou J et al. 2006. Cyclin D1 overexpression in esophageal cancer from southern China and its clinical significance. Cancer Lett. 231: 94-101. https://doi.org/10.1016/j.canlet.2005.01.040
- Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. 2013. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 41: D991-995. https://doi.org/10.1093/nar/gks1193
- Edgar R, Domrachev M, Lash AE. 2002. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207-210. https://doi.org/10.1093/nar/30.1.207
- Chen YK, Tung CW, Lee JY, Hung YC, Lee CH, Chou SH, et al. 2016. Plasma matrix metalloproteinase 1 improves the detection and survival prediction of esophageal squamous cell carcinoma. Sci. Rep. 6: 30057. https://doi.org/10.1038/srep30057
- Wen J, Yang H, Liu MZ, Luo KJ, Liu H, Hu Y, et al. 2014. Gene expression analysis of pretreatment biopsies predicts the pathological response of esophageal squamous cell carcinomas to neo-chemoradiotherapy. Ann. Oncol. 25: 1769-1774. https://doi.org/10.1093/annonc/mdu201
- Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47: D607-d613. https://doi.org/10.1093/nar/gky1131
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. https://doi.org/10.1101/gr.1239303
- Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 Suppl 4 (Suppl 4): S11. https://doi.org/10.1186/1752-0509-8-S4-S11
- Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45 (W1): W98-w102. https://doi.org/10.1093/nar/gkx247
- Sunseri J, Koes DR. 2016. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 44 (W1): W442-448. https://doi.org/10.1093/nar/gkw287
- Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
- Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. 2021. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49(D1): D437-d451. https://doi.org/10.1093/nar/gkaa1038
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. https://doi.org/10.1002/jcc.21256
- Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. 2012. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory. Comput. 8: 3314-3321. https://doi.org/10.1021/ct300418h
- Fang B, Li Z, Qiu Y, Cho N, Yoo HM. 2021. Inhibition of UBA5 expression and induction of autophagy in breast cancer cells by usenamine A. Biomolecules 11: 1348. https://doi.org/10.3390/biom11091348
- Fang J, Ji WH, Wang FZ, Xie TM, Wang L, Fu ZF, et al. 2021. Circular RNA hsa_circ_0000700 promotes cell proliferation and migration in esophageal squamous cell carcinoma by sponging miR-1229. J. Cancer 12: 2610-2623. https://doi.org/10.7150/jca.47112
- Baiu I, Backhus L. 2020. Esophageal cancer surgery. JAMA 324: 1580. https://doi.org/10.1001/jama.2020.2101
- Fatehi Hassanabad A, Chehade R, Breadner D, Raphael J. 2020. Esophageal carcinoma: towards targeted therapies. Cell. Oncol. (Dordrecht). 43: 195-209. https://doi.org/10.1007/s13402-019-00488-2
- Tu Y, Chen L, Ren N, Li B, Wu Y, Rankin GO, et al. 2020. Standardized saponin extract from Baiye No.1 tea (Camellia sinensis) flowers induced S phase cell cycle arrest and apoptosis via AKT-MDM2-p53 signaling pathway in ovarian cancer cells. Molecules 25: 3515. https://doi.org/10.3390/molecules25153515
- Adelaide J, Monges G, Derderian C, Seitz JF, Birnbaum D. 1995. Oesophageal cancer and amplification of the human cyclin D gene CCND1/PRAD1. Br. J. Cancer 71: 64-68. https://doi.org/10.1038/bjc.1995.13
- Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, et al. 2018. CDK 4/6 Inhibitors as single agent in advanced solid tumors. Front. Oncol. 8: 608. https://doi.org/10.3389/fonc.2018.00608
- Zhou J, Wu Z, Zhang Z, Goss L, McFarland J, Nagaraja A, et al. 2021. Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut 71: 665-675.
- Liu Z, Rader J, He S, Phung T, Thiele CJ. 2013. CASZ1 inhibits cell cycle progression in neuroblastoma by restoring pRb activity. Cell Cycle 12: 2210-2218. https://doi.org/10.4161/cc.25265
- Jin H, Zhang X, Su J, Teng Y, Ren H, Yang L. 2015. RNA interference-mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Mol. Med. Rep. 12: 6617-6625. https://doi.org/10.3892/mmr.2015.4280
- Bendris N, Lemmers B, Blanchard JM, Arsic N. 2011. Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements. PLoS One 6: e22879. https://doi.org/10.1371/journal.pone.0022879
- Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, et al. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376: 313-320. https://doi.org/10.1038/376313a0
- Lao-Sirieix P, Lovat L, Fitzgerald RC. 2007. Cyclin A immunocytology as a risk stratification tool for Barrett's esophagus surveillance. Clin. Cancer Res. 13: 659-665. https://doi.org/10.1158/1078-0432.ccr-06-1385
- Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, et al. 2015. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J. Med. Genet. 52: 147-156. https://doi.org/10.1136/jmedgenet-2014-102691
- Liu F, Fan Y, Ou L, Li T, Fan J, Duan L, et al. 2020. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. OncoTargets Ther. 13: 4545-4558. https://doi.org/10.2147/OTT.S242482
- Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, et al. 2009. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Acta pharmacol. Sin. 30: 1694-1708. https://doi.org/10.1038/aps.2009.159