Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030037). Yao Z, Jeon HS, Yoo JY, Kang YJ, Kim MJ, and Kim TJ were supported by the BK21 4 Program (MOE), Republic of Korea.
References
- Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
- Weng Y, Yao J, Sparks S, Wang KY. 2017. Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. Int. J. Mol. Sci. 18: 523. https://doi.org/10.3390/ijms18030523
- Chen H, McGowan EM, Ren N, Lal S, Nassif N, Shad-Kaneez F, et al. 2018. Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases. Biomark. Insights 13: 117271918785130.
- Dabbagh F, Negahdaripour M, Berenjian A, Behfar A, Mohammadi F, Zamani M, et al. 2014. Nattokinase: production and application. Appl. Microbiol. Biotechnol. 98: 9199-9206. https://doi.org/10.1007/s00253-014-6135-3
- Yao Z, Liu X, Shim JM, Lee KW, Kim HJ, Kim JH. 2017. Properties of a fibrinolytic enzyme secreted by Bacillus amyloliquefaciens RSB34, isolated from doenjang. J. Microbiol. Biotechnol. 27: 9-18. https://doi.org/10.4014/jmb.1608.08034
- Yun GH, Lee ET, Kim SD. 2003. Purification and characterization of a fibrinolytic enzyme produced from Bacillus amyloliquefaciens K42 isolated from Korean soy sauce. Kor. J. Microbiol. Biotechnol. 31: 284-291.
- Jeong SJ, Kwon GH, Chun JY, Kim JS, Park CS, Kwon DY, et al. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from cheonggukjang and its expression in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 17: 1018-1023.
- Yao Z, Kim JA, Kim JH. 2019. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. J. Microbiol. Biotechnol. 29: 347-356. https://doi.org/10.4014/jmb.1810.10053
- Stemmer WPC. 1994. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91: 10747-10751. https://doi.org/10.1073/pnas.91.22.10747
- Ness JE, Welch M, Giver L, Bueno M, Cherry JR, Borchert TV, et al. 1999. DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17: 893-896. https://doi.org/10.1038/12884
- Chen J, Jiang N, Wang T, Xie GR, Zhang ZL, Li H, et al. 2016. DNA shuffling of uricase gene leads to a more "human like" chimeric uricase with increased uricolytic activity. Int. J. Biol. Macromol. 82: 522-529. https://doi.org/10.1016/j.ijbiomac.2015.10.053
- Yang MJ, Lee HW, Kim H. 2017. Enhancement of thermostability of Bacillus subtilis endoglucanase by error-prone PCR and DNA shuffling. Appl. Biol. Chem. 60:73-78. https://doi.org/10.1007/s13765-017-0254-3
- Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K. 2014. Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J. Biotechnol. 187: 139-146. https://doi.org/10.1016/j.jbiotec.2014.07.446
- Wu XC, Lee W, Tran L, Wong SL. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952-4958. https://doi.org/10.1128/jb.173.16.4952-4958.1991
- Jeong SJ, Cho KM, Lee CK, Kim GM, Shin JH, Kim JS, et al. 2014. Overexpression of aprE2, a fibrinolytic enzyme gene from Bacillus subtilis CH3-5, in Escherichia coli and the properties of aprE2. J. Microbiol. Biotechnol. 24: 969-978. https://doi.org/10.4014/jmb.1401.01034
- Yao Z, Kim JA, Kim JH. 2018. Properties of a fibrinolytic enzyme secreted by Bacillus subtilis JS2 isolated from saeu (small shrimp) jeotgal. Food Sci. Biotechnol. 27: 765-772. https://doi.org/10.1007/s10068-017-0299-4
- Yao Z, Meng Y, Le HG, Kim JA, Kim JH. 2019. Isolation of Bacillus subtilis SJ4 from saeu (shrimp) jeotgal, a Korean fermented seafood, and its fibrinolytic activity. Microbiol. Biotechnol. Lett. 47: 522-529. https://doi.org/10.4014/mbl.1906.06003
- Jeong SJ, Heo K, Park JY, Lee KW, Park JY, Joo SH, Kim JH. 2015. Characterization of AprE176, a fibrinolytic enzyme from Bacillus subtilis HK176. J. Microbiol. Biotechnol. 25: 89-97. https://doi.org/10.4014/jmb.1409.09087
- Sambrook JF, Russell DW. 2001. Molecular cloning: a laboratory manual. 3rd edition. Cold Spring Harbor Laboratory Press, New York, USA.
- Tina KG, Bhadra R, Srinivasan N. 2007. PIC: protein interactions calculator. Nucleic Acids Res. 35: 473-476.
- Argos P, Rossmann MG, Grau UM, Zuber H, Frank G, Tratschin JD. 1979. Thermal stability and protein structure. Biochemistry 18: 5698-5703. https://doi.org/10.1021/bi00592a028
- Ning X, Zhang Y, Yuan T, Li Q, Tian J, Guan W, et al. 2018. Enhanced thermostability of glucose oxidase through computer-aided molecular design. Int. J. Mol. Sci. 19: 425. https://doi.org/10.3390/ijms19020425
- Yoon SJ, Yu MA, Sim GS, Kwon ST, Hwang JK, Shin JK, et al. 2002. Screening and characterization of microorganisms with fibrinolytic activity from fermented foods. J. Microbiol. Biotechnol. 12: 649-656.
- Barzkar N, Jahromi ST, Vianello F. 2022. Marine microbial fibrinolytic enzymes: an overview of source, production, biochemical properties and thrombolytic activity. Mar. Drugs 20: 46. https://doi.org/10.3390/md20010046