References
- Ramachandran G. 2014. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 5: 213-218. https://doi.org/10.4161/viru.27024
- Sun J, Zhang J, Wang X, Ji F, Ronco C, Tian J, et al. 2020. Gut-liver crosstalk in sepsis-induced liver injury. Crit. Care 24: 614. https://doi.org/10.1186/s13054-020-03327-1
- Gomez H, Kellum JA. 2016. Sepsis-induced acute kidney injury. Curr. Opin. Crit. Care 22: 546-53. https://doi.org/10.1097/MCC.0000000000000356
- Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, et al. 2017. Acute kidney injury in sepsis. Intensive Care Med. 43: 816-828. https://doi.org/10.1007/s00134-017-4755-7
- Peerapornratana S, Manrique-Caballero CL, Gomez H, Kellum JA.2019. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96: 1083-1099. https://doi.org/10.1016/j.kint.2019.05.026
- Poston JT, Koyner JL. 2019. Sepsis associated acute kidney injury. BMJ 364: k4891. https://doi.org/10.1136/bmj.k4891
- Ma S, Evans RG, Iguchi N, Tare M, Parkington HC, Bellomo R, et al. 2019. Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation 26: e12483. https://doi.org/10.1111/micc.12483
- Moreira RS, Irigoyen M, Sanches TR, Volpini RA, Camara NO, Malheiros DM, et al. 2014. Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307: R514-524. https://doi.org/10.1152/ajpregu.00445.2013
- Huang G, Bao J, Shao X, Zhou W, Wu B, Ni Z, et al. 2020. Inhibiting pannexin-1 alleviates sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis. Life Sci. 254: 117791. https://doi.org/10.1016/j.lfs.2020.117791
- Wen G, Zhou T, Gu W. 2021. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 12: 911-946. https://doi.org/10.1007/s13238-020-00799-3
- Shi Y, Jia X, Xu J. 2020. The new function of circRNA: translation. Clin. Transl. Oncol. 22: 2162-2169. https://doi.org/10.1007/s12094-020-02371-1
- Bao X, Zhang Q, Liu N, Zhuang S, Li Z, Meng Q, et al. 2019. Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury. J. Cell Mol. Med. 23: 7111-7115. https://doi.org/10.1111/jcmm.14577
- Li H, Zhang X, Wang P, Zhou X, Liang H, Li C. 2021. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol. Metab. Syndr. 13: 7. https://doi.org/10.1186/s13098-021-00625-8
- He Y, Sun Y, Peng J. 2021. Circ_0114428 Regulates sepsis-induced kidney injury by targeting the miR-495-3p/CRBN Axis. Inflammation 44: 1464-1477. https://doi.org/10.1007/s10753-021-01432-z
- Xu HP, Ma XY, Yang C. 2021. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis. Front. Mol. Biosci. 8: 660269. https://doi.org/10.3389/fmolb.2021.660269
- Hu K, Liu X, Li Y, Li Q, Xu Y, Zeng W, et al. 2020. Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med. Sci. Monit. 26: e922253.
- Leelahavanichkul A, Somparn P, Panich T, Chancharoenthana W, Wongphom J, Pisitkun T, et al. 2015. Serum miRNA-122 in acute liver injury induced by kidney injury and sepsis in CD-1 mouse models. Hepatol. Res. 45: 1341-1352. https://doi.org/10.1111/hepr.12501
- Xu L, Hu G, Xing P, Zhou M, Wang D. 2020. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci. 262: 118505. https://doi.org/10.1016/j.lfs.2020.118505
- Shi CC, Pan LY, Peng ZY, Li JG. 2020. CircMTO1 attenuated acute kidney injury through regulating miR-337. Inflammation 43: 1304-1311. https://doi.org/10.1007/s10753-020-01209-w
- Luo N, Gao HM, Wang YQ, Li HJ, Li Y. 2020. MiR-942-5p alleviates septic acute kidney injury by targeting FOXO3. Eur. Rev. Med. Pharmacol. Sci. 24: 6237-6244.
- Ma C, Wu L, Song L, He Y, Adel Abdo Moqbel S, Yan S, et al. 2020. The pro-inflammatory effect of NR4A3 in osteoarthritis. J. Cell Mol. Med. 24: 930-940. https://doi.org/10.1111/jcmm.14804
- Fedorova O, Petukhov A, Daks A, Shuvalov O, Leonova T, Vasileva E, et al. 2019. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene 38: 2108-2122. https://doi.org/10.1038/s41388-018-0566-8
- Balasubramanian S, Jansen M, Valerius MT, Humphreys BD, Strom TB. 2012. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J. Am. Soc. Nephrol. 23: 674-686. https://doi.org/10.1681/ASN.2011070646
- Deng Z, Sun M, Wu J, Fang H, Cai S, An S, et al. 2021. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis. 12: 217. https://doi.org/10.1038/s41419-021-03508-y
- Shi Y, Sun CF, Ge WH, Du YP, Hu NB. 2020. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress. J. Cell Mol. Med. 24: 11397-11408. https://doi.org/10.1111/jcmm.15741
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Fischer JW, Leung AK. CircRNAs: a regulator of cellular stress. Crit. Rev. Biochem. Mol. Biol. 52: 220-233. https://doi.org/10.1080/10409238.2016.1276882
- Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 12: 381-388. https://doi.org/10.1080/15476286.2015.1020271
- Patop IL, Wust S, Kadener SA-O. Past, present, and future of circRNAs. EMBO J. 38: e100836.
- Li H, Zhang X, Wang P, Zhou X, Liang H, Li C. 2021. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol. Metab. Syndr. 13: 7. https://doi.org/10.1186/s13098-021-00625-8
- Qi L, Yan Y, Chen B, Cao J, Liang G, Xu P, et al. 2021. Research progress of circRNA as a biomarker of sepsis: a narrative review. Ann. Transl. Med. 9: 720. https://doi.org/10.21037/atm-21-1247
- Beltran-Garcia J, Osca-Verdegal R, Nacher-Sendra E, Pallardo FV, Garcia-Gimenez JL. 2020. Circular RNAs in sepsis: biogenesis, function, and clinical significance. Cells 9: 1544. https://doi.org/10.3390/cells9061544
- Holdt LM, Kohlmaier A, Teupser D. 2018. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol. Life Sci. 75: 1071-1098. https://doi.org/10.1007/s00018-017-2688-5
- Chen J, Lin M, Zhang S. 2019. Identification of key miRNA-mRNA pairs in septic mice by bioinformatics analysis. Mol. Med. Rep. 20: 3858-3866.
- Xiao T, Sun C, Xiao Y, Li Y. 2020. lncRNA NEAT1 mediates sepsis progression by regulating Irak2 via sponging miR-370-3p. Biol. Open 9: bio049353. https://doi.org/10.1242/bio.049353
- Xu L, Hu G, Xing P, Zhou M, Wang D. Corrigendum to "Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis" [Life Sci. 2020 Dec 1; 262:118505. doi:10.1016/j.lfs.2020.118505. Epub 2020 Sep 28]. Life Sci. 272: 119159.
- Wu XY, Fang Y, Zheng FX, Zhang YZ, Li QL. 2020. LncRNA NEAT1 facilitates the progression of sepsis through up-regulating TSP1 via sponging miR-370-3p. Eur. Rev. Med. Pharmacol. Sci. 24: 333-344.